1. Textbox.io DOCUMENTAtIONottt e e e e e e e e e e e 3

LA Developer GUIAE 4
1.1.1 System ReQUITEMENTSottt ettt e e ettt e e e e e e e e e e e 5
1.1.2 Getting Startedottt 7
LB API BaASICS . ittt ittt e e e 9

1.1.3.1 Creating and Removing Editors 10
1.1.3.2 Getting Editor INStANCESot 11
1.1.3.3 Setting and Getting CONtENtottt e e e e 12
1134 HTML COU8 ViBW . .ottt et e e e e e e e e e e e e e 13
1.1.4 Customizing the EAItOr 15
1.1.4.1 Configuration ODJECTttt 17
1.1.4.2 Changing the Toolbar 18
1.1.4.2.1 Adding CUSTOM COMMANGS . . . o .ottt e 20

1.1.4.3 Customizing the User Interface CoIOrs 22
1.1.4.4 Using Your Own DOCUMENt StYlESot e e e e e 23

1.1 A5 FIEring CONtENtottt e e e e 27
1.1.4.6 Macros: Writing Content-Aware COOEttt ettt e e e e e e 29
1.1.4.7 Creating Dynamic CONENt e 30
1.1.5 Editor types - ClassiC VS ININEo e 31
1.1.6 Working With IMages oot e e e 33
1.1.6.1 Handling LOCAl IMAGES oo ot ittt e e e e e e e e e e e e e 34
1.1.6.1.1 Handling Asynchronous Image Uploads i 37
1.1.6.1.2 Node.js Upload Handler e 38
1.1.6.1.3 PHP Upload Handler e e e e e 41

1.1.7 Checking SpPellingot 43

L2 AP T rENCE . o o 44

1.2.0 CONfIQUIALION . . ettt 45
1.2.0.1 aUtOSUDIMIL . . a7
12,02 basePath . . . 48
1.2.1.3 COURVIBW . . ottt et et et e e e e e e e e e e 49
O o2 50
1.2.1.4. 1 dOCUMEN Sy S . . .ot e 51
L2 04 2 Sty S o 52
12,04 3 StyleSheetS . . . 55
L 2. 5 IMAGES . v vttt e e 56
1.2.0.5.1AlI0WLOCAL . . .ot e 57
1.2.0.5.2 @dItING . . oottt e 58
12,053 Upload 60
L2 L B NKS oot 62
1.2.0.6. 1 emMbed .. 63
1.2.0.6.2validation 64
1.2 1.7 MACTOS . v vttt e e ettt e e e e e e 65
L 2. L 8 PaASEE . .o 67
12,09 SPEIliNG . .o 69
L2 L A0 Ui vttt 70
1.2.1.10.12 aria-label . . .o 71
1.2.1.10.2 QUIOTESIZE . . oo ot ettt et ettt e et e e e e e e 72
L1.2.0.00.3 COI0OIS oottt et e 73
12,0 00,4 f0NES o 75
121105 1aNQUAGES oottt 77
1.2.0.00.6 10CAIE .. .o 80
1.2.0.00.7 SROMCULS . . . oottt e e e e e e 82
1.2.0.00.8 10000 . . 83
L 2.2 BAItOr . .ttt 94
1.2.2.1 @ditOr.CONENE . o .ottt e e e e e 95
1.2.2.1.1 editor.CONtENE.SEE() . . o\ v ottt et e e e 96
1.2.2.1.2 editor.CONtENE.GEL() . . o« ot ottt et e e e e e 97
1.2.2.1.3 editor.content.insertHtmIAICUISOr()ot 98
1.2.2.1.4 editor.content.documentEIement()t 99
1.2.2.1.5 editor.content.uploadimages()ottt 100
1.2.2.1.6 editor.content.getSelectedText()ttt 101
1.2.2.1.7 editor.content.iSDirty() oot 102
1.2.2.1.8 editor.content.SetDIrtY()ottt 103
1.2.2.1.9 editor.content.SEIECHIONt 104
1.2.2.2 @ditOr. BIEMENT . . . 106
1.2.2. 3 @AIOr BVENES . o ot 107
1.2.2.3. 1 editor.events.loaded 108
1.2.2.3.2 editOr.@VeNtS.fOCUS oot 111
1.2.2.3.3 @ditOr.@VeNtS.AirY . ..o e 114
1.2.2.3.4 editor.events.Change 117
1.2.2.4 editOr fiHerS . . 120
1.2.2.4. 0 SEIECIOT . . . ottt 121
1.2.2.4.2 PrediCatet 124
1.2.2.5 @ditOr.fOCUS . . . ot 127
1.2.2.6 @AItOF.MACIOS . . . ottt ittt ettt et e e e e e 128
1.2.2.6.1 editor.macros.addSimpleMacro()ottt 129
1.2.2.6.2 editor.macros.remMoVEMACIO()ttt e e e e e e e e 130
1.2.2.7 @AIOIMESSAGE ot it ettt et et et e e e 131
1.2.2.8 @dItOr.MOUEo 132

1.2.2.8.1 editor-mode.get()ot e 133

1.2.2.8.2 editor.mode.set(MOode) 134

1.2.2.9 @dItOr.TESIONE . o .o 135

L 2. 3 EXIDOXIO . oo 136
7 T o = 137

1.2.3.2 getACtVEEAItOr 138

12 3 B NlNE . 139

1,234 NINeAIl e 140

1.2 3 5 IS SUPPOIEA . . 141

12 3 B I PlACE . . 142

12,3 7 rePlaCAll . 143

L2 3 B VIS ON oottt 144

1.3 Server-Side COMPONENESottt e e e e e e e e e e e e e e e e 145
1.3.1Installation @nd SELUPottt 146
L3 2 L0G0ING .ttt e 155
1.3.3Embed RiCh Media 156
1.3.3.1 Configure Enhanced Media Embed Server 157

1.3.3.2 Integrate Enhanced Media Embed Server 162

1.3.4 Adding CUSEOM DICHONAIIES . . . oottt ettt ettt e e e e e e e e e e e e e e e e e 168

1.4 ACCESSIDIITY . ..o 170
1.4.1 Textbox.io Accessibility COmPlaNCeo 171
1.4.2 Creating Accessible CONtENt 172

L D HEID & SUPP Ot .ottt 173
1.5.1 Web Services Troubleshootingo oot e 174
1.5.1.1 Browser SPeCifiC ISSUBSottt ettt e e e e 175

1.5.1.2 Error Messages About the "Origins” or "Spelling Service Missing" i 176
1.5.1.2.1 Using Browser Tooling to Investigate ServiCes ISSUESttt 179

1.5.1.3 General Troubleshootingot 181

1.5.1.4 OUt Of MEMOIY EFTOIS . oottt e e e e e e e e e e e e e e e 182

1.5.1.5 Troubleshooting TOOIS - CUIl 185

Textbox.io Documentation

Welcome to Textbox.io

Textbox.io is a tool for creating great looking content in online apps. Whether it's in social communities, blogs, emails, or anything in between, Textbox.io
lets people express themselves on the web.

We believe that writing isn't just a task, it's how we express who we are in a new digital world. The sum of what you write is often far more than the
characters on the page. Writing matters, and the tools we use to write should matter too.

Getting Started

Textbox.io consists of a JavaScript-based rich text editor and a set of server components that provide functionality to enrich the editing experience.

Getting started with Textbox.io is easy. See the Getting Started guide on how to install the editor client onto a web server and be up and running with the T
extbox.io SDK in minutes.

More Information

Features, examples and pricing information can be found at http://textbox.io

Getting Help

Please open a support case or post on the online forums at the Tiny Support center. Before contacting support, review the information our support team
needs to assist you.

http://Textbox.io
http://Textbox.io
http://textbox.io/demo/
http://textbox.io/
https://support.tiny.cloud

Developer Guide
The WYSIWYG HTML Editor SDK. Designed for Mobile and Desktop.

iPad = 12:47 PM al f 90% -

< T textbox.io ¢l MO & +

(= WYSIWYG HTML Editor

€Back & ¢ o=~ Paragraph B [/ =~ More ~

Write for the Web

?Laarnhg the craft of how to write for the Web is a definite departure from
doing so for a newspaper (remember those?), magazine or brochure. The
writing styles are distinctly different for each medium ‘

On the Web, today’s readers are often distracted: thay might very well be
reading your content, blogs or articles on small-screen mobile devices while
they're an the go deing a hundred different things. That makes it tougher to
grab--and hold--their attention. They want to see visuals and great, provocative headlines (or they won't click on
your content). And, if they do click on it, they want to scan for meaning instead of parsing every waord.

Writers have to remember that one of the fundamental differences between learming how to write for the Web vs,
wrriting for print invalves the difference between narrative writing and actionable writing.

Textbox.io is a tool for creating great looking content in online apps. Whether it's in social communities, blogs, emails, or anything in between, Textbox.io
lets people express themselves on the web.

Textbox.io uses the latest HTML5, JavaScript and CSS3 technologies to deliver the best possible editing experience. Key design goals of Textbox.io
include:

Provide a minimal, functional and responsive user interface designed to deliver great usability in any application
Support mobile devices with first class editing and responsive design

Deliver unbeatable copy and paste from Microsoft® Office™

Create clean, well formatted HTML in all circumstances

Provide a simple yet powerful API to enable easy integration

Leverage the power of modern web standards

The Basics

Working with Textbox.io is simple. In the most basic terms, all you need to do to integrate Textbox.io is:

1. Load the textboxio.js library
2. Call the replace method to replace <div> or <textarea> elements with a Textbox.io instance.

Textbox.io can be used as either a standalone editor client or combined with the Server-Side Components. These Server-Side Components offer a set of
supporting services that can be used to enrich the editing environment.

Getting Started

See the Getting Started guide to start using Textbox.io in your applications in minutes.

https://docs.ephox.com/display/serversidecomponents/Server-Side+Components

System Requirements

® Browsers
® Web Services (for optional server-side components)

Supported Browsers

Textbox.io is based on HTML5 JavaScript and CSS3 standards and will operate on most web browsers that support these standards.

If your application needs to support older browsers, use the textboxio.isSupported() API to verify whether the editor is available at runtime.

Supported Browsers by Platform

The following client platforms are fully supported for Textbox.io.

Platform Browsers

Windows Microsoft Edge*
Internet Explorer 11
Chrome*
Firefox*

Firefox ESR*
OS X Safari 9+

Chrome*

Firefox*

Firefox ESR*
Linux Chrome*

Firefox*

Firefox ESR*
i0S 9 Safari

Android 5+ | Chrome*

* Current stable channel version.

Internet Explorer must be in Edge mode

To USe Textbox.io on Internet Explorer 11 on a site in the local and intranet Internet Explorer security zones, your page must place the browser into edge
mode using the X- UA- Conpat i bl e header (see the code fragment below). Otherwise, in these zones Internet Explorer defaults to using compatibility
mode (i.e. it reverts to using the Internet Explorer 9 rendering and JavaScript engines). If your application/site is in Internet Explorer's Internet zone then it
is not necessary to adjust Internet Explorer's settings.

<meta http-equi v="X-UA-Conpati bl e" content="1E=edge" />

Textbox.io DOES NOT support IE compatibility mode

More information (external link)
Importing Images from Microsoft Office

Importing images from Microsoft Word content requires the use of the Adobe Flash plugin on the following browsers:

® Safari
® Microsoft Edge

If the Adobe Flash plugin is not available or is blocked in the client browser then textual content will be imported but no image content will be imported.
Copy and paste on Internet Explorer 11, Firefox (version 45+) and Chrome (version 54+) does not require any additional plugins.

Copy and paste from Microsoft Office is not supported on mobile device platforms.
Embedded Web View Support for Mobile Platforms

ForTnformation on how to use Textbox.io within the web view of an iOS or Android application please contact us.

Tiny is currently working with selected app developers to bring this functionality to Textbox.io in future. If you're interested in working with Textbox.io inside
an i0S or Android application (other than the browser) then please get in touch with Tiny via support.tiny.cloud.

Web Services

http://stackoverflow.com/questions/13284083/ie10-renders-in-ie7-mode-how-to-force-standards-mode/13287226#13287226
https://support.tiny.cloud

Server-side Components require a Java Web Application Server that supports Servlet Implementation API 3.0.

Java Development Kit

JDK 7 update 55+

Java (J2EE) Application Servers

Tomcat 7+

Jetty 8+

Operating Systems

Windows Server 2008 SP2
Red Hat Enterprise Linux v6

Red Hat Enterprise Linux v5

Minimum Hardware Requirements

CPU: Dual Core Processor ~ 2Ghz. For higher loads, a quad core or higher is recommended.

RAM: 4 Gigabytes of RAM available for services
Platform Support

Tinyis committed to broadening support for various application servers / platforms. If you have a requirement to support an application server that is not
listed here, please contact support@tiny.cloud.

mailto:support@tiny.cloud

Getting Started

Getting started with Textbox.io is super easy. In this guide you will invoke Textbox.io on a <t ext ar ea> as part of an HTML <f or m>. When the <f or
> is submitted, the contents of the Textbox.io editor will be submitted as part of the <f or n»> POST.

To complete this guide, you will need access to a web server. This guide assumes a web server is running on port 80 on localhost.

Step 1: Download a copy of Textbox.io and put it on a web server

® Download the Textbox.io SDK from Tiny.
® Unzip the package and open the textboxio-all or textboxio-client directory.
* Move the textboxio subdirectory into a web accessible location on your web server (for example, localhost).

Step 2: Add Textbox.io to a page
With Textbox.io accessible via your web server, you can now include the Textbox.io script anywhere you would like to use the Textbox.io editor.

To add the script, add the following inside your page’s <head> tag.

<script src="http://YOUR DOVAI N YOUR- DI RECTORY/ t ext boxi o/ t ext boxi 0.] s"></scri pt>

Step 3: Invoke Textbox.io as Part of a Web Form
With the script included, you may then invoke Textbox.io on any element (or elements) in your webpage.
Textbox.io lets you identify elements to replace via a CSS3 selector. To add Textbox.io to a page you pass a selector to t ext boxi o. repl ace() .

In this example, you will replace <t ext ar ea i d="nyt ext ar ea" ></ t ext ar ea> with a Textbox.io editor by passing the selector '#mytextarea' to t e
xt boxi o. repl ace().

<! DOCTYPE html >
<htnml >
<head>
<script src="http://local host/textboxio/textboxio.js"></script>
</ head>
<body>
<h1>Textbox.io Getting Started Guide</hil>
<forne
<textarea id="nytextarea"></textarea>
<button type="subm t">Subm t</button>
</forne
<script type="text/javascript">
var editor = textboxio.replace(' #nytextarea');
</script>
</ body>
</htm >

For the best user experience, it is recommended that the HTML5 doc type is set.

<! YPE htni >

Try it:

You've added Textbox.io to the page - that's all there is to it!

Next, we'll look at retrieving content as part of a <form> POST.

Step 4: Saving Content with a <form> POST

When the form is submitted, the Textbox.io editor mimics the behavior of a normal HTML <t ext ar ea> during a form POST. No additional
configuration is required.

https://textbox.io/download/
http://www.w3.org/TR/css3-selectors/

What's Next

At this point, you've seen how to create Textbox.io instances on a page using textboxio.replace(), and you've seen how to retrieve content from
Textbox.io as part of an HTML <form> POST. There's way more under the hood if you're feeling adventurous: read on for more Textbox.io goodness:

Editor types - Classic vs Inline - Learn about the 2 modes of editing supported by Textbox.io, and decide which works best for you
API Basics - Learn the basics of using the editor API, such as getting and setting content in the editor.

Customizing the Editor - Learn how to configure and customize Textbox.io for your applications.

Customizing the User Interface Colors - How to change the appearance of Textbox.io

Working with Images - Learn how to work with images for image editing and local image upload.

API reference

APl Basics

This section explores several important concepts for using Textbox.io within your application.

Creating and Removing Editors

Learn how to create and remove editor instances from pages using the replace() and restore() methods.
Getting Editor Instances

How to obtain a reference to a particular editor. Using an editor reference, you can get and set content and manipulate a particular editor in the page.

Setting and Getting Content

Textbox.io supports several mechanisms of setting and getting content. Learn which will be of most use within your application.

HTML Code View

Creating and Removing Editors

The t ext boxi o JavaScript global enables you to create, modify and interact with instances of the editor. This is the starting point for any integration. This
global is available immediately after the editor's JavaScript file has been loaded on the page.

The repl ace and edi t or. r est or e methods are the two most important methods in the API. They enable editor instances to be created and removed.

Creating Editors

The r epl ace method is used to create a Textbox.io editor. The method takes a CSS3 selector as an argument, which identifies a target element on the
page, and then replaces it with an editor. This target element must be either a <di v> or <t ext ar ea> element. The target element's contents are
automatically loaded into the new Textbox.io editor.

This method returns an instance of t ext boxi o. edi t or . See Textbox.io APl Reference for more information on using t ext boxi o. edi t or.

Create customized instances of Textbox.io by providing an editor configuration as a second argument. See the Customizing the Editor Developer Guide for
more information.

Form Handling / Editor Contents

When used in conjunction with a <t ext ar ea> in an HTML <f or > the content contained within Textbox.io will be submitted as part of the form's POST
operation.

To retrieve the editor contents using JavaScript see Setting and Getting Content.

Restoring the source element (Removing the editor)

The edi t or . r est or e method enables you to remove Textbox.io instances from the page, restoring the original target element. When called, editor.
restore updates the target element's HTML content to match the HTML content of the Textbox.io editor.

10

http://www.w3.org/TR/css3-selectors/

Getting Editor Instances

Get the Active Editor Instance

Access the current or last active editor using t ext boxi o. get Acti veEdi t or () . The active editor is the editor that was most recently focused by a
user. If no editor has been focused, then the first editor on the page is returned.

Get Editor Instances

Textbox.io remembers the selector that was used to create each editor. A developer may retrieve editor instances by passing that selector to t ext boxi o.
get () . Note, that this method returns an array of editors.

11

Setting and Getting Content

Textbox.io supports several mechanisms of setting and getting content. This article outlines a number of common methods for working with HTML content
using Textbox.io.

Note that both programmatic (JavaScript) and automatic (HTML + POST) methods for working with content are available.

Setting Content with Javascript

A developer can explicitly set the content of an edi t or, rather than rely on the automatic behavior of r epl ace. To set the HTML contents of an edi t or,
simply pass a string of HTML content to edi t or. content. set ().

Setting Content Automatically with r epl ace()

When adding a Textbox.io editor to a page using r epl ace, the HTML content for any matched element is passed to the newly created edi t or instance.
In this way Textbox.io can be used to edit the HTML contents of any specified <t ext ar ea> or <di v> without the need for a specific setting of the
editor's content - the editor simply reads in the contents of the matched element.

Getting Content with Javascript

To get the content of an edi t or explicitly, a developer can use edi t or. cont ent . get () . This method returns a string representation of the editor's
HTML content.

Getting Content Automatically with HTML <f or n> POST

When Textbox.io is used to replace a <t ext ar ea> element within a <f or m>, Textbox.io will mimic the behavior of the original <t ext ar ea> when the
form is submitted. This means that the contents of the editor are simply posted along with the other form elements, using the name attribute of the original
<t ext ar ea> as the key.

Image Content

1
By default Textbox.io saves local images as Base64 data URIs. This encodes images directly within the HTML of the content rather than separate files.
This enable images to be imported from Microsoft Word and images to be available in the document immediately without uploading.

See Handling Local Images for information on uploading local image content to your application.

12

http://Textbox.io
http://Textbox.io
http://Textbox.io
http://Textbox.io
http://tools.ietf.org/html/rfc2397

HTML Code View

Textbox.io includes the ability for users to directly edit HTML via code view. This provides power users with more flexibility over the content they create and
includes features such as automatic tag completion and matching.

When enabled, the user can toggle between code view and design view by clicking on the icon in the bottom right corner of the editor container

Paragraph =~ B 7 Y Mae-

zv sat down by the roadside, near a little brook, and
iened her basket and got out some bread. She
iece to the Scarecrow, but he refused.

r hungry,” he said, “and it is a lucky thing I am not,
ith is only painted, and if T should cut a hole in it so
,the straw [am stuffed with would come out, and

"

Editor container with code view enabled. The user can toggle between code and design views by clicking the icon in the bottom right corner.

Code view is only available in classic mode and is enabled by default.

Switching between code view and design view programmatically

The Textbox.io API provides functionality to toggle between code and design views via edi t or . node. set (node) .

var editor = textboxio.replace('#id);

edi tor. node. set (' code'); /1 switches the editor into HTM. narkup editing node
edi tor. nobde. set (' design'); /1 switches the editor into WYSI WG ('design') node
var current Mbde = editor.node.get(); //returns the current node, either 'design' or 'code'.

Hiding the code view button

If you wish to switch between code view and design view programmatically, you may wish to disable the code view button. To disable the code view button
but leave the code view feature enabled, set the confi gur ati on codevi ew. showBut t on property to f al se.

var config = {
codevi ew. {
showButton : fal se /1 H des the code view button, default is true (shown)

}
1

var editor = textboxio.replace('#id , config);

Disabling code view

In some instances, you may need to disable code view feature via the conf i gur at i on codevi ew. enabl ed property.

When you disable the code view feature, the button is also removed from the Textbox.io Ul.

var config = {
codevi ew. {
enabled : fal se /1 Disables code view feature, default is true (enabled)

}
}

var editor = textboxio.replace('#id , config);

13

Filtering

Toggling between code and design views triggers filter logic (both external and potentially via plugins) to be executed on editor content. This is necessary
to sanitize content and remove superfluous Ul (such as spelling underlines, etc) from content when switching.

Logic is as follows:
* switching from design to code view - cOde view's content is run through the out put filter chain
® Switching from code view to design view - the design view's content is run through the i nput filter chain

See Filtering Content for more information on content filtering.

See also:

® API reference
® Filtering Content
® Customizing the Editor

14

Customizing the Editor

Textbox.io provides a number of API features enabling you to integrate it tightly with your application.

Basic Customizations

Configuration Object

The configuration object serves as the foundation to all customizations you can make in Textbox.io. This guide will show you what it is, and what you can
configure.

Customizing the User Interface Colors

The colors of the Textbox.io user interface are completely customizable. Textbox.io is packaged with a simple theme builder tool that enables designers to
customize the colors of the editor to suit their application.

Changing the Toolbar

You can choose which items appear on the toolbar as well as the order and grouping of toolbar items. Additionally, you can add your own custom items to
the toolbar.

Using your Own Document Styles

Fancy Title

he conter ifeblood of any lively community. Yet, without user adoption then
content —
Drop Caps
Enter Epl — or built to drive user adoption and remove the barriers to effective
niing atyBas
Dignified

Textbox styles drop-down menu

Textbox.io can be configured to use custom stylesheets to more closely reflect the theme and styling of your web application's published content.
Additionally, you can specify custom styles to appear in the editor's styles drop-down menu.

Advanced Customizations

Filtering Content

You can create custom code to manipulate pieces of the document as content is get and set in the editor. This enables you to build a number of unique
features, such as showing invisible elements to the editor user, or removing styles from editor content "Just in Time" before they are published

The Filtering Content guide will show you how to get started on building your own filters.

Macros: Writing Content-Aware Code
Textbox.io's macro engine provides real-time pattern detection and manipulation of content by custom javascript functions, as the user types!

The macro guide will take you through an example macro to replace text as you write.

15

Creating Dynamic Content

This guide will show you how to create customizations that leverage both macros and filters to allow handling of dynamic content in the editor.

16

Configuration Object

Textbox.io is configured by providing a configuration object as a parameter to the r epl ace method. The configuration object enables you to control:

® the functionality available on the toolbar,

® the CSS used to render the HTML content,

® the behaviour of copy paste functionality, and

® the Textbox.io Server Components available in an editor.

Providing a configuration to Textbox.io is optional. You can choose to override all or part of the default configuration object when supplying an object as a
parameter to the r epl ace method. Textbox.io is provided with a set of configuration defaults for the toolbar and paste functionality (see Configuration
Defaults).

It's strongly recommended you provide a style sheet configuration for rendering the content. Textbox.io's default configuration only specifies the set of
toolpar commands and paste operation behavior. It does not specify a style sheet for rendering the content or any services for use with the editor.

Example

For more information on the configuration options for Textbox.io see the configuration documentation in API reference.

17

https://docs.ephox.com/display/serversidecomponents/Spell+Checking
https://docs.ephox.com/display/tbio/configuration#configuration-defaults
https://docs.ephox.com/display/tbio/configuration#configuration-defaults
http://Textbox.io

Changing the Toolbar

The items that appear in the editor toolbar, as well as the order in which they appear, can be customized by the Textbox.io API. Additionally, you can
define your own custom toolbar commands to extend the functionality of the editor and tailor it to your specific needs.

The stock toolbar configuration

o - Paragraph ~

Stock editor toolbar

The editor provides a stock toolbar configuration if one is not explicitly defined. This contains a number of items of core functionality.

Contextual toolbar items

Stock editor toolbar with contextual items showing

The editor will show extra toolbar items depending on the selection context. These can be disabled in the toolbar configuration.

Defining the toolbar configuration

The items in the toolbar are defined in the editor configuration object.

Out of the box, Textbox.io contains a number of available toolbar ("“Command") items. Each item is referenced by a Command Item ID, and each button
you see in the editor has its own Command Item ID- for example 'bold, ‘italic’, ‘underline'.

Further, there are aliases to groups of functionality in the editor to enable you to quickly add blocks of functionality to the editor. These are outlined in Com
mand Group Aliases.

The following example shows an editor where the toolbar items have been explicitly defined using Command Group Aliases:

Grouping buttons

When customizing the editor, it is often useful to organize toolbar command items into groups of functionality. Groups provide users with a visual
separation in the Ul and commands within a group move to the More Drawer as group of items when required.

Visually, toolbar groups appear as a set of items between 2 thin vertical lines:

18

http://docs.ephox.com/display/tbio/Command+Item+IDs#CommandItemIDs-CommandAliases
http://docs.ephox.com/display/tbio/Command+Item+IDs#CommandItemIDs-CommandAliases
http://docs.ephox.com/display/tbio/Command+Item+IDs#CommandItemIDs-CommandAliases

4 P - Paragraph ~

Group Group Group

Groups are defined inline to the toolbar item configuration.

An example of an editor with 2 groups is shown below:

Advanced toolbar customization

Textbox.io also provides the ability to create your own toolbar commands. Read more about this in the Adding custom commands guide.

19

Adding custom commands

Creating custom toolbar commands

Textbox.io’s toolbar can be customized to suit the needs of your application. Buttons on the toolbar are referred to as commands. Custom commands can
be created at initialization time as part of the editor configuration.

Important

WHhEh using custom commands, you'll need to explicitly define the rest of your toolbar configuration (i.e. stipulate all items to appear). See Changing the
Toolbar for more information.

A typical custom command can be defined appear as the following:

var custonmComand = {
id: 'nyConmand',
text : 'ny custom conmand',
icon: './path/to/ ny/inmage.png',
action : function () {
alert('hello world);
/1l write customfunctionality to occur when the button is clicked here.

Properties:

Property Type Description

id String A unique, user-defined key to identify the custom command. This enables the command to be uniquely identified at runtime
text String The text to display as a tooltip when a user hovers over the command

icon String a URL path (relative or absolute) to a 13*13px image for the command's icon.

action function = A function defining the action to occur when the user clicks on the button.

Including custom commands in your toolbar

Including the custom command in your toolbar requires specifying where you'd like it in your toolbar:

var nyEditor = textboxio.replace(' #soneDiv', {
ui i {
tool bar: {
itenms: ['undo','insert', 'style', 'enphasis', 'align', 'listindent', 'format', 'tools',
/'l other tool bar itens
{ //create a group to house our custom command
| abel : ' Custom conmmands group',
items: [custonmCommand] //our newly created conmand

1)

Basic example

This example shows how to create a basic custom item and add it to the toolbar.

20

http://Textbox.io

Accessing the editor from action functions

Often when writing action functions for custom commands, you'll want to do something meaningful with the editor content. To do this, use t ext boxi o.
get Acti veEdi tor () to obtain a reference to the editor where the cursor is currently located.

See the API reference for more information.

Example

21

Customizing the User Interface Colors

The user interface colors of Textbox.io can be customized to match with the theme of your application.

All the tooling that you require to theme Textbox.io can be found within the theme folder of the Textbox.io distribution. Several example themes are also
packaged in this directory.

Creating a Theme

The theme building tool requires knowledge of CSS syntax and use of command line tools. It also requires a node.js installation (link provided in README.
html).

The README.html file in the theme folder contains instructions on how to setup and use the theme building tool packaged with Textbox.io.
The tool enables designers to specify a small set of colors that are then compiled into a complete theme for use with Textbox.io.

Themes are compiled into a set of CSS files that are placed in the textboxio/resources/css folder ready for deployment.

Textbox.io Theme Tooling

The theme folder of the Textbox.io distribution contains a theme building tool that can be used to easily create Textbox.io themes. This tool consists of 3
main parts:

® README.html - Instructions on how to use the theme builder and live preview the compiled theme
® theme.css - A file containing the variables representing the colors that can be set for Textbox.io's interface

® Gruntfile.js and package.json - A grunt build script and supporting NPM package that automatically compiles the editor theme when you change th
eme.css

Deploying a Theme

Once a theme has been built the resulting CSS files are placed into the textbox.io/resources/css folder ready to be deployed with your instance of Textbox.
io. This overwrites the default Textbox.io theme and no further action is required before deploying Textbox.io.

It's recommended that the theme be deployed as part of a complete Textbox.io deployment to ensure that the compiled theme matches the deployed
version of Textbox.io.

Deploying and Maintaining Themes
1
Compiled themes should only be used with the same version of Textbox.io as the theme was developed and compiled against.

When updating to a new build of Textbox.io (i.e. a new version or a patch release) you will need to recompile your theme and deploy it as part of your
Textbox.io update.

Developers should retain a backup of their theme.css file so that they can easily recompile their theme.

22

Using Your Own Document Styles

As a developer, Textbox.io enables you to take fine-grained control over the way content is presented, as well as the styles that users are able to select
from the styles dropdown menu.

Injecting your own CSS files
In Classic Editing Mode, the textbox.io editor document is contained within an i f r ame element. This means that any styles or stylesheets declared on
yoli host page are not inherited by the editor. These need to be explicitly declared as references in the editor configuration.

CSS and styles are configured per-instance as part of the Textbox.io configuration object

You can declare your own stylesheets using the st yl esheet s property or inject CSS directly using the docunent St yl es property:

var configCSS = {
css |
styl esheets : ['http://ww. exanpl e. com nycss.css', 'anotherfile.css'], // an array of CSS file URLs
docunent Styles : 'body { background:red; }' // a string of CSS

Special cases: Table cells & List Items

The list of items shown on the styles drop-down menu are dependent on the current editor selection. Custom block styles declared for table cells or list
items will only become visible when the editor selection exists on those elements as these styles are only valid CSS within a table or list structure. In this
way Textbox.io prevents users from creating invalid HTML.

sl il

3x3 tabl e

block.h2
0 2

block.h3 i
3]
. block.hd -

bk, iy

Black .pE#

Tabis &nde

Blug Call

Custom styles for table cells will only appear when the selection is on a table

Example: custom CSS

The example below shows the editor using a highly customized CSS file:

Customizing the styles drop-down menu

The items shown in Textbox.io's styles drop-down menu can be customized to suit the requirements of your application. There configuration approaches
available are:

23

http://Textbox.io

® A fixed list of custom styles defined per-editor using the the editor CSS configuration object.
® The editor inspects configured content CSS to optionally show additional styles on the menu (new in version 2.4.1)

o A - Drop Caps

ULSTC Paragraph S AeIrno

Fancy Title

ifeblood of any lively community. Yet, without user adoption then

he conter

content —
Drop Caps

Enter Epl 5 or built to drive user adoption and remove the barriers to effective
line Stylas
Dignified

The Textbox.io styles drop-down menu

Overview: Block vs. Inline styles

Before attempting to create your own custom styles, it is worthwhile understanding the difference between block style transformations, and inline
transformations.
® When a block transformation is applied to a selection, the entire block encasing the selection (such as a paragraph or heading) is transformed:

The quick brown fox jumped over the lazy dog.

The quick brown Foxjumpecl over the 1a29 dog.

® When an inline transformation is applied, to a selection, only the selection itself (and no surrounding content) is transformed:

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

In its stock configuration, the drop-down styles menu contains only block style transformations - inline style changes can be made via the font drop-

down menu.

A detailed explanation of transformation behaviour is included with the styles configuration object documentation.

Defining Styles in the configuration object

24

The styles drop-down can be specified in the editor styles configuration object.
The following is an example of custom styles:

® “fancy title" is an example of a block style. Similarly, if the rules had defined h2.titl e, h3.title,orp.titl e, this transformation would take
place at a block level.
* "dignified" is an example of an inline style, where the prefixing element has been removed from the definition.

Note the differences in the presentation of these styles in the drop-down menu declaration compared to the CSS declaration file.

Defining styles in the content CSS
This feature was introduced in Textbox.io release 2.4.1

The editor inspects all content styles and can be configured to add style entries automatically. This is useful in scenarios where the editor configuration is
fixed across an entire CMS platform but the content stylesheet is set by a template. With this configuration, the styles dropdown can change with the
template rather than requiring configuration changes.

Showing or hiding styles

When specifying CSS for use in an instance of the editor, you may not necessarily want every style to appear in the styles drop-down combo box. Using
specific CSS attributes you can hide or display specified CSS elements in the styles drop-down.

This process is controlled by the showDocumentStyles configuration option, disabled by default, which allows for detailed control over the process:

®* When disabled, only styles explicitly set to visible are shown. This can be useful when a complete stylesheet is used in the editor content and
showing them all would result in a confusing drop-down.
® When enabled, all styles are shown unless explicitly set to hidden. This is useful when a dedicated stylesheet is created for the editor content.

Custom styles are subject to the same restrictions as rules defined in the configuration object. Any rules that are not valid under those restrictions are
ignared regardless of their visibility attribute.

CSS definition attributes

In order to leverage the document stylesheet to achieve this feature, the attributes used must be completely valid CSS. To this end, the editor looks for
rules that are targeted at an element attribute (ephox- dat a) which the editor will never set and therefore the rule should never activate in normal use.
Using the vi si bi | i ty and cont ent properties, both whether a style is shown and the text shown in the menu can be controlled.

/* never shown in the drop-down, regardless of configuration */
hl. bl ue {
color: blue
}
hl. bl ue[ephox-data] {
visibility: hidden;
}

/* always shown in the drop-down, regardless of configuration */
hl.red {
color: red
}
hl.red[ephox-data] {
visibility: visible;
content: "red heading";

}

/* Only shown in the drop-down when showDocunent Styles is true */
hl. green {
col or: green;
}
hl. green[ephox-data] {
content: "green heading";

}

Content style entries defined in this way are added below any rules defined in the configuration object, which allows either a mixture of fixed and dynamic
styles or (if configured with an empty list) a completely dynamic style drop-down.

The ability of the editor to inspect the content CSS is dependent on CORS. If an external content stylesheet is on a different domain to the editor page, the
CS$ request must return CORS headers otherwise the browser blocks scripts from inspecting the stylesheet.

Custom style examples

25

http://static.ephox.com/jsfiddle/examples/css/customstyles.css

showDocumentStyles disabled

This example replicates the configuration object example above, but adds rules to the style drop-down using the content CSS rather than using the
configuration object. In this case showDocunent St yl es is false, so only the style explicitly configured is added.

showDocumentStyles enabled

This example inverts the showDocunent St yl es config from above. In this mode, all styles are shown on the menu except the one that is hidden through
a CSS property. The configuration object is an empty array indicating only document styles should be shown.

26

Filtering Content

Filter overview

Filters are used by the editor to manipulate content as it is entered (via edi t or . cont ent . set () or a paste event), or when content is requested from
the editor (via edi t or . cont ent . get ()).

Such filters are used internally by the editor to perform meaningful functionality such as:

® Cleaning dirty HTML from Microsoft® Word when it is pasted
® Stripping unnecessary or undesirable CSS from input HTML

Filters come in 2 types:

1. Input filters - manipulate raw content before it becomes visible in the editor. Such uses for an input filter may be to change or strip styling from
input, or convert invisible elements into elements that are visible

2. Output filters - executed before the editor returns content to the API (i.e. before edi t or . cont ent . get () returns a string). Output filters can
be used to strip-out internal content created during the editing process (such as invisible marker elements, or other elements used for editing and
annotation, but that are not necessarily desired in the final output)

Filters are added to editor instances at runtime.

Input filters:

(content rendered into
editor)

Filter functions

user interface let your users create great looking
RaW HT M L HTML anywhere: on the desktop and on mobile.
(string)

@ —— editor.content.set()
Texthox io's powerful editing tools and simple

Output filters:

(Visible editor document)

—

(string)

Textbox.io's powerful editing tools and simple
user interface let your users create great looking
HTML anywhere: on the desktop and on mobile.

textboxm —— editor.content.get() ——— T Cleaned, publish-ready HTML

Input filters vs. Output filters

27

Implementing filters: Predicate vs. Selector filters

The basic premise behind implementing a filter is to find elements in the source document that you wish to manipulate in some way. You can do this 2
ways in the Textbox.io API:

® Using a selector - Where your filter function is executed on all elements on the document matching the selector pattern you provide.

® Using a predicate function- Where you provide a match predicate function to determine which elements your filter function should be executed
on. Your predicate function is passed every element in the source document. It should return t r ue if you require the element to be processed by
the filter function.

Example: Creating a selector input filter

In this example, we'll create an input filter that adds some custom CSS to every H1 element in the source document. Note how we use a selector string as
the first argument.

Example: Creating a predicate input filter

Here's an example the same input filter, but rather than using a selector, a predicate function is to find the HL elements:

Example: Output filter

In the example below, a filter has been implemented to strip any inline styling from p tags before edi t or. cont ent . get () returns a value:

28

Macros: Writing Content-Aware Code

What is a macro?

Textbox.io provides a Macro API enabling you to create functions that detect particular content in the editor as a user types, and perform meaningful
actions to manipulate the content. Specifically macros are evaluated when the user presses the space or the enter keys.

Currently, Textbox provides the ability to add a "Simple" macro, using:
edi tor. macros. addSi npl eMacro(' startString', 'endString', callback)

where any text entered before the spacebar is pressed that begins with st art St ri ng and ends with endSt ri ng forms a pattern. When a match is found,
cal | back is applied with the match as an argument.

cal | back can return a replacement (if one is necessary), or the original that was matched.

Built-in macros

A collection of macros are enabled by default. The list of macros, and how to control their availability, is documented in the macros configuration object.

Example: Red text

In the example provided below, we match on any text that begins with [r ed] and ends with [/ r ed] , and wrap the text in a span where the color is set to
red. For example, any of the following would be matches:

® [red]hello world[/red]

® [red]testing[/red]
® [red] She sells sea shells by the sea shore[/red]

See Also

macros configuration object

editor.macros runtime API

29

Creating Dynamic Content

The combination of filters and macros in the editor can create a powerful environment for creating dynamic page content in the editor.
Dynamic content is where a script, templating engine, or process evaluates a variable or declared function contained within a HTML document.

An example of such a dynamic page fragment might be:

<htm >
<body>
<p> The date today is: [[date]] </p>
</ body>
</htm >

Where [[dat e]] is evaluated at render-time by some outside process, for example.
Often, it is difficult to portray such dynamic content in a WYSIWYG editing environment, without taking away the dynamic behavior itself.
Using macros, you can replace content in real-time, whilst preserving original state by wrapping original values in dat a- attributes.

The demo below shows an example where we can show true WYSIWYG output of dynamic functions, such as [[dat e]], but use the original function
when edi t or. content . get () is called:

30

Editor types - Classic vs Inline

Textbox.io is able to edit content in 2 distinct ways - "Classic” mode, where the editor appears in a self-contained box, and "Inline mode" (also known as in-
context mode) where the editor literally takes an element and makes it editable. In inline mode, you edit content exactly as it appears within the context of
the page it is being hosted upon.

Inline vs classic mode - a quick comparison

Inline Classic
® Inherits stylesheets from the host page the editor is invoked upon ® |s self contained (within an iframe)
® Provides a 'true' WYSIWYG editing experience within the context of the ® Requires injection of outside CSS styles using the configuration
host page API
® Doesn't work on mobile (...yet...) ® Works on mobile devices
® Does not provide a fullscreen editing mode or source code view * Editor toolbar is always visible (regardless of whether the editor is
® Container grows as the content inside grows focused)
® Toolbar grows and can be dragged around the page ® Allows editing in fullscreen mode

® Editor container remains a fixed size

Inline editing does not currently work on Mobile devices. See: Developing editor experiences optimized for mixed platforms

Demo - Classic Editing

Demo - Inline Editing

Which type of Editor should | choose?
It really depends on the kinds of problems you're looking to solve through the use of an editor.
Classic Mode is useful for generating content that requires isolation- such as form fields, or email compose fields.

Inline Mode is useful for editing content such as real-time WYSIWYG editing of complete web pages

Inline-specific configuration options

Toolbar visibility

The toolbar can be made invisible at initialization via the configuration object. Such functionality is useful when developing visually lightweight "minimal”
applications.

Toolbar draggability

By default, the user can drag the toolbar away from it's container object as if it were a floating window. This functionality may be disabled.

Toolbar offset
An offset may be set on the toolbar to provide visual separation between the toolbar and the content being edited.
Note: the editor assumes a "pinned" behavior when it is attached to the content (i.e. when it has no offset). This gives it special properties (such as

attaching it to the top of the viewport) when large blocks of content are scrolled. This functionality is no-longer executed when the toolbar has an offset
from the container window.

31

Features disabled for inline editing

The following features are disabled when inline editing is used (regardless of whether they are declared in configuration):

® Source code view
® Fullscreen editing

See also

API Basics - Learn the basics of using the editor API, such as Getting and setting content in the editor.

Toolbar configuration object

Customizing the Editor - Learn how to configure and customize Textbox.io for your applications.

Spell Checking - Find out more about how to enhance the editing experience with spell checking, image upload and other web services from Tiny.
API reference

32

http://textbox.io/
https://docs.ephox.com/display/serversidecomponents/Spell+Checking

Working with Images

Textbox.io offers rich and comprehensive functionality to work with images in content.

Image editing - crop, resize/resample, rotate and flip
Automatic image resizing
Insert local images
Insert images from the web
Broad copy and paste support
® From the file system
® From Microsoft Word
® From image editing applications
® Drag and drop insertion

Image Editing
Image editing in Textbox.io enables users to crop, resize/resample, rotate and flip images within the editor.

Editing an image creates a new copy of the image which can be retained in the content as a data URL, or uploaded when the content is submitted or by
calling the uploadimages function.

Editing Web Images

Editing images from the same domain as the editing page is supported without any changes.

Editing images from a server other than the current domain requires the deployment of the Textbox.io Server-side Components, specifically the Extended
Image Editing proxy. This is due to the cross origin resource sharing (CORS) requirements of modern browsers. The Extended Image Editing proxy

service ensures that images from a remote server can be edited within Textbox.io.

A local copy of the image is created for editing and the edited image is then retained as a data URI in the content or uploaded to a server based on your
configuration.

Limiting Image Size

The size of inserted local images can be restricted when image editing is turned on. This enables developers to ensure image file sizes are more
appropriate for their site.

Setting the pr ef err edHei ght and pr ef err edW dt h configuration options in the image configuration ensures that local images will be resized and
resampled to ensure that they do not exceed the dimensions specified.

Working with Local Images and Edited Images

To enable end users and developers to work with content that contains local images (i.e. images from the end-user's machine) Textbox.io includes several
options on how to store and manage images.

Developers can choose to turn off all functionality that relies on local images, store the images at data URIs within the content or upload images to a server
using the uploading capabilities of Textbox.io.

For more information see the article on Handling Local Images.

Uploading Local Images
Textbox.io's image handling functionality includes methods to upload asynchronously via HTTP.

When image editing is turned on images are not uploaded while the document is being edited. This ensures that extraneous, partially edited images are
not uploaded while editing is taking place.

When image editing is turned off local images are uploaded in the background as soon as they have been added to the document.

The article on Handling Local Images explains more about this process and how to handle asynchronous image uploads when saving content.

33

Handling Local Images

Textbox.io gives you the ability to handle local images in one of several ways within your application. You may either upload local images from the client to
your application, store images directly in the editor generated HTML itself (using base64 data URIs), or have the Textbox.io editor prevent local images
from being inserted.

With all but the last option (prevent local images) the user experience is the same: users can add images to Textbox.io instances via the image upload
dialog, by dragging and dropping images from their computer, or via copy-paste.

Image Handling Description
Option
Keep image data in [Default] Local images are stored within the editor's HTML content as base64 encoded data URIs.

HTML content

Upload images Local images are uploaded to a remote server when added to the editor via HTTP POST.
Textbox.io automatically updates the <i mage> sr ¢ attribute with the new path to the uploaded image once the upload has
been completed.

See the information on uploading local images below to learn how to configure Textbox.io to do this.

Prevent local image Local image functionality is turned off - users can no longer use the local image upload dialog tab, drag-drop, or copy paste
insertion to add images to editor content.

See the information on Preventing Local Image Insertion below to learn how to configure Textbox.io to do this.

Local vs. Remote Images

Local images are defined as those residing on the client filesystem. They may also be part of a word processor document or otherwise present on the
clipboard. Textbox.io can be configured to upload local images to your application or embed them in editor HTML.

Remote images are those which exist on a remote host and are accessible via a URL.

Storing Local Images in Content (base64 data URIS)

Textbox.io will by default store local images added to an editor as embedded base64 data URIs.

If this is the desired editor behavior in your application, no further action is necessary. When a user adds an image to a Textbox.io editor within your
application Textbox.io will automatically embed that image into the HTML content.

Uploading Local Images

Configuring your application and Textbox.io for local image uploads involves first creating a server-side handler and then configuring your Textbox.io
instance to use that handler.

Image Upload on Form Submission

1
If you have enabled the image upload functionality of Textbox.io it is strongly recommended that you review the information on Handling Asynchronous
Image Uploads.

Textbox.io uploads images asynchronously to ensure the author's flow isn't interrupted by multiple image upload dialogs/prompts. However, developers
need to be mindful of this when integrating Textbox.io so as to ensure all images are uploaded prior to content being submitted to a server.

Server-side Upload Handler

In order to upload local files to the remote server via HTTP POST, you will need a server-side upload handler script that accepts the images and objects
on the server and stores them in the correct directory or database. This script is the same script that would be used for uploading any file to the server via
the HTTP POST method.

For example, when you use a file input element (<I NPUT t ype="fi | e">), the script specified in the act i on attribute of the parent <f or m> element is
used to upload the file to the server.

The server-side upload handler script should return a JSON object similar to the one below. The returned JSON should include a single location attribute
with the path to the stored image as it's value.

{ "location" : "/uploaded/inage/ path/inmage. png" }

34

http://textbox.io/
http://Textbox.io
http://en.wikipedia.org/wiki/Data_URI_scheme
http://Textbox.io
http://textbox.io

Note, that the '/ here in the | ocat i on field is used to suggest a r oot - r el ati ve path. If you don't provide the leading /', then the path will be r el ati ve.
If you provide a protocol (e.g. ht t p), then the path will be absol ut e. The table below shows how the full image path will be resolved against the various
types of image locations:

Base Path Image Location Path Type Full Image Path
http://server-name/base/ | /uploaded/image.png root-relative http://server-name/uploaded/image.png
http://server-name/base/ | uploaded/image.png relative http://server-name/base/uploaded/image.png
http://server-name/base/ | http://elsewhere/image.png = absolute http://elsewhere/image.png

Example Upload Handler Scripts

The following scripts are reference implementations for handling server-side
uploads with Textbox.io. Please note that these scripts are provided only for
reference - they are not intended for production use.

® Node.js Upload Handler
® PHP Upload Handler

Your upload handler script should:
® Store the image in a location appropriate for your application

® Success: Return JSON with the path to the uploaded image
® Failure: Return HTTP 500 if an error occurs

Configuring Textbox.io to Use a Server-side Upload Handler

Once you've set up a server side upload handler, all that's left is to make Textbox.io aware of the handler's location via a conf i gur at i on object and set
up the path used to construct the <i mage> sr c attribute.

In the example below, any local image added to a the Textbox.io editor is uploaded to the handler script located at ttp://example.com/postAcceptor.php.

Textbox.io then constructs the path to the newly uploaded image by combining the (optional) basePat h value and the image filename. The resulting editor
html is then updated with the new path to the image, generating HTML like: <i mg src="/ny/ appl i cati on/i mages/fil enane. png" />.

var config = {

i mges : {
upload : {
url : '/postAcceptor.php', /1 Handl er URL
basePath: '/ny/application/imges/', /1 Renote inmge storage path
credentials: false /1
Optional: sends cookies with the request when true
}
}

}

var editor = textboxio.replace('#targetld' , config);

For more detail on see the images configuration property.

CORS Considerations

You may choose for your web application to upload image data to a separate domain. If so, you will need to configure Cross-origin resource sharing
(CORS) for your application to comply with JavaScript "same origin" restrictions.

CORS has very strict rules about what constitutes a cross-origin request. The browser can require CORS headers when uploading to the same server the
editor is hosted on, for example:

® A different port on the same domain name
® Using the host IP address instead of the domain name
® Swapping between HTTP and HTTPS for the page and the upload script

The upload script URL origin must exactly match the origin of the URL in the address bar, or the browser will require CORS headers to access it. A good
way to guarantee this is to use a relative URL to specify the script address, instead of an absolute one.

All supported browsers will print a message to the JavaScript console if there is a CORS error, and Textbox.io will display an error banner.

The Reference Upload Handler Scripts provided here configure CORS on a per script basis. You may also choose to configure CORS at the web
application layer or the HTTP server layer.

Further Reading on CORS

® W3C Wiki - CORS Enabled

35

ttp://example.com/postAcceptor.php
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/wiki/CORS_Enabled#At_the_Web_Application_level...
http://www.w3.org/wiki/CORS_Enabled#At_the_Web_Application_level...
http://www.w3.org/wiki/CORS_Enabled#At_the_HTTP_Server_level...
http://CORS Enabled

® MDN - HTTP access control (CORS)
® W3C - Cross-Origin Resource Sharing Specification

Preventing Local Image Insertion

If you wish to prevent the insertion of local images by users you may do so by setting the i nages. al | owLocal to f al se.

When i mages. al | owlLocal is set to false, users will be unable to add local images to editor content from the local image upload dialog tab, by drag-
drop, or by copy paste. If a user takes an action that would normally result in the insertion of an image, a notification will be displayed that insertion of
images is not allowed.

The example below creates an editor where local images have been prevented.
var config = {

i mges : {
al |l owLocal : false /1 Prevent users from adding |ocal inmages

}
3

var editor = textboxio.replace('#targetld' , config);

36

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

Handling Asynchronous Image Uploads

Textbox.io automatic image uploads are asynchronous.

It is therefore possible for users to save their content before all images have completed uploading. In this situation, no server path to the image resource
is available and those images will be stored in the HTML as Base64 data URIs.

When replacing a textarea inside a form element the editor will automatically enable aut osubm t . This delays the standard form submit event to wait for
images to upload. In all other scenarios, or if autosubmit is disabled, this delay must be introduced manually.

To ensure that all images have been uploaded developers can use the edi t or. cont ent. upl oadl mages() method to ensure that all image uploads
have completed and that the HTML content of the editor has been updated appropriately. upl oadl mages() accepts a callback function, triggered when
images have finished uploading and the content is ready.

The example below demonstrates how to use the upl oadl nages() method in conjunction with the cont ent . get () method to ensure that all images

have been uploaded before the content is retrieved from the editor. It could also be used with a form's onsubmi t method in a similar way.

uploadimages and Content Retrieval Callback

edi tor. content. upl oadl mages(function() {
var content = editor.content.get();
consol e. l og(content);

1)

upl oadl nages() scans the editor content for all Base64 encoded images and queues them for upload. If no images are uploading, the callback is
executed immediately.

37

Node.js Upload Handler

The following script is a simple Node.js application that creates an HTTP server, and handles image uploads (multipart form posts) suitable for use with
Textbox.io. Please note that this script is provided for your reference only.

File Modified

JavaScript File postAcceptor.js Dec 10, 2015 by Michael Fromin

Drag and drop to upload or browse for files {I

Node.js Post Acceptor

38

https://docs.ephox.com/download/attachments/23594436/postAcceptor.js?api=v2

var http = require(' http');
var fs = require('fs');
var multiparty = require('nultiparty'); // https://ww.npnjs.conl package/ nultiparty

[Bt B HHE S R R SR B B

/1 Setup the Textbox.io Exanpl e Post Acceptor

[B B SR S S R SR B B

/] Set the URL and port for the post acceptor

var acceptorPath = '/upload';

var acceptorPort = 8080;

/1l Only these origins will be allowed to upl oad inages

var allowedOrigins = ['http://localhost', '"http://192.168.1.1'];
/1 Set the upload directory

/1 Notw. This string is prepended to the filenane to construct

/1 the image url returned to the Textbox.io editor, like: uploadDirectory/filenane. png
var uploadDirectory = 'inmges/';

/1 Set the resource URL for fromwhich stored inages will be served.

var resourceUrl = "http://local host/";

[#it#H# HHHE BH#AH HHHE BREE HHHE HHEE B
[#itH B HHHE HHE HHHE R R B B

http.createServer(function(req, res) {
var origin = req. headers.origin;
if(allowedOrigins.indexOt(origin) == -1) {
/1 Deny invalid origins
res.witeHead(403, { '"HTTP/1.0 403 Origin Denied : origin});

res.end();
} else {
/1 For valid origins check path and nethod
if (req.url === acceptorPath && req. method === 'POST') {

var form= new nmultiparty.Forn();
form parse(req);
formon('file', function(name, file) {
var saveFilePath = uploadDirectory + file.originalFilenane;
fs.rename(file.path, saveFilePath, function(err) {
if (err) {
/1 Handl e problens with file saving
res.witeHead(500);
res.end();
} else {
/'l Respond to the successful upload with JSON.
/1 Use a location key to specify the path to the saved inmage resource.
/1 { location : '/your/uploaded/image/file'}
var textboxResponse = JSON. stringify({
| ocation : saveFilePath

1)

/1 1f your script needs to receive cookies, set inages.upload.credentials:true in
/'l the Textbox.io configuration and enable the follow ng two headers.
/1 res.setHeader (' Access-Control -Al |l ow Credentials', "true');
/'l res.setHeader (' P3P, 'CP="There is no P3P policy."");
res. statusCode = 200;
res. set Header (' Access-Control -AllowOrigin', origin);
res. end(text boxResponse) ;
}
1)
s
formon('error', function(err) {
res.witeHead(500);
res.end();
1)

return;

} else {
/!l Return 404 for requests for other paths/nethods
res.witeHead(404);
res.end();
}
}

}).listen(acceptorPort);

39

40

PHP Upload Handler

The following script creates a server-side upload handler in PHP suitable for use with Textbox.io.

Please note that this script is provided for your reference - you'll need to update this as necessary for your application.

File Modified

File postAcceptor.php Dec 10, 2015 by Michael Fromin

Drag and drop to upload or browse for files {I

postAcceptor.php

<?php

[A F KKK I FAK KKK AKX FAK KK A KAK I XK AR KA KA I A KK R I A X I AKX h ok

* Only these origins will be allowed to upload inages *

EHAKK AR A KRKEK KK AR K AR IRKAK KK AR K AR AXF AR K AK AR KA KA KA KKk

$accepted_origins = array("http://local host", "http://192.168.1.1", "http://exanple.con');

[HRHAKFHK KK I I AR KEKAKFAK KK AKIAKIRI AR KA K A I AKX

* Change this line to set the upload fol der *
***/

$i mageFol der = "inmages/";

reset ($_FILES);

$tenmp = current ($_FI LES);

if (is_uploaded_file($tenmp['tnp_nanme'])){
if (isset($_SERVER'HTTP_ORIGN])) {

/] sanme-origin requests won't set an origin. If the originis set, it nust be valid.

if (in_array($_SERVER'HTTP_ORIG N], $accepted_origins)) {

header (' Access-Control -AllowOrigin: ' . $ SERVER['HTTP. ORIG N]);
} else {
header ("HTTP/ 1.0 403 Origin Denied");
return;
}
}
/*
If your script needs to receive cookies, set images.upload.credentials:true in
the Textbox.io configuration and enable the following two headers.
*/

/'l header (' Access-Control-Al |l ow Credentials: true');
/'l header (' P3P: CP="There is no P3P policy."");
/] Sanitize input

if (preg_match("/([MwWs\d\-_~ VATV D)LY 1{2,})/", $tenp['nanme'])) {
header ("HTTP/ 1.0 500 Invalid file nane.");
return;
}

/1 Verify extension

if (lin_array(strtol ower(pathinfo($tenmp[' nane'], PATH NFO EXTENSION)), array("gif",

header ("HTTP/ 1.0 500 Invalid extension.");
return;
}
/'l Accept upload if there was no origin, or if it is an accepted origin
$filetowite = $i mageFol der . $tenp[' name'];
nove_upl oaded_file($tenp['tnp_name'], $filetowite);

/1 Respond to the successful upload with JSON
/1 Use a location key to specify the path to the saved image resource.

/1 { location : '/your/uploaded/image/file'}
echo json_encode(array('location' => $filetowite));
} else {

/1 Notify Textbox.io editor that the upload failed
header ("HTTP/ 1. 0 500 Server Error");

?>

41

ipg",

"png"))) {

https://docs.ephox.com/download/attachments/23594434/postAcceptor.php?api=v2

42

Checking Spelling

Spell Checking in Textbox.io

Textbox.io includes optional server-side spell checking and autocorrect as you type for a number of common languages. Textbox.io detects the language
of the editor document (or the surrounding page when using inline editing), and checks the spelling of words against the remote dictionary.

Spell Checking Languages Supported

Languages Document Language Code

English en, en_US

English (UK) en_UK, en_GB, en_BR
Danish da

Dutch nl

Finnish fi

French fr

German de

Italian it

Norwegian nb

Portuguese (Brazil) pt
Portuguese (Europe) pt _PT
Spanish es

Swedish sv

Getting Started Using Spell Checking

Follow the installing the server-side spelling component article for more detail and to get started.

Note: The Textbox.io Spelling & server-side components are compatible with Java Application Servers.

Note

1
If you have already installed the Textbox.io server-side components you'll just need to use the spel | i ng Textbox.io Client Editor API to reference the
URL locations of your installed services.

43

http://Textbox.io
http://Textbox.io
http://Textbox.io

API reference

The Textbox.io Editor JavaScript API starts at the t ext boxi o JavaScript global, all Textbox.io code runs
via this object. The t ext boxi o global is available immediately after textboxio.js has finished loading.

See the Getting Started guide for details on loading textboxio.js.

44

® configuration

® editor

® textho

autosubmit

® basePath

® 6 06 06 0 0 0 06X @0 06 0 06 0 0 0 0 o

io

codeview
css
images
links
macros
paste
spelling
ui

editor.content
editor.element
editor.events
editor filters
editor.focus
editor.macros
editor.message
editor.mode
editor.restore

get
getActiveEditor
inline

inlineAll
isSupported
replace
replaceAll
version

configuration

Overview

Textbox.io edi t or instances are configured through a configuration object, passed as a second argument when creating an editor via r epl ace, repl ac
eAll,inline,orinlineAll.Defining properties of a conf i gur at i on object will override the configuration defaults supplied for any generated
instances of edi t or .

Configuration Object Properties

Note that all properties are optional. Defining a property overrides the editor default behavior.
aut osubmi t Boolean & Specifies whether textboxio should handle form submission
basePat h String Specifies the path to the textboxio resources folder

css Object Content CSS and styling application

codevi ew Object Code view feature

i mages Object Image handling & upload

i nks Object Content link validation

macr os Object Built-in macro configuration

paste Object Content paste behavior

spel ling Object Content spell checking service

ui Object Editor Ul including toolbars, menus, etc.

Configuration Defaults

This following object will replicate the default configuration for all Textbox.io instances.

45

Implicit Configuration Defaults

var defaultConfig = {
autosubmit: true,

css |
styl esheets : [''],
styles : [
{ rule: '"p', text: 'block.p' },
{ rule: "hl', text: 'block.h1l" },
{ rule: '"h2", text: 'block.h2" },
{ rule: "h3, text: 'block.h3 1},
{ rule: 'h4", text: 'block.h4" },
{ rule: "div', text: 'block.div' },
{ rule: 'pre', text: 'block.pre' }
]
H

codeview : {
enabl ed: true,
showButton: true

H
i mges : {
al | owLocal : true
H
| anguages : ['en', 'es', "fr', 'de', '"pt', 'zh']
macros : {
allowed : ['headings', 'lists', 'semantics', 'entities', "hr', 'link']
}
ui o {
tool bar : {
items : ['undo', 'insert', 'style', 'enphasis', 'align', 'listindent', 'format',
"tools']
}
}

1

Internationalization

Nofte that t ext properties are pre-configured with values like bl ock. p. These string keys refer to the internationalized string label for that item. Using a
pre-configured value means that the text value will be internationalized by | ocal e.

46

autosubmit

configuration

aut osubmi t

This option configures whether t ext boxi o will automatically handle form submission for text areas. Its value must be either t r ue or f al se.

Some frameworks will replace normal form submissions with AJAX requests. These frameworks may be incompatible with t ext boxi o' s autosubmit
fu(d-t}pnality. In this scenario it is recommended that you disable autosubmit.

By default aut osubmi t is setto t r ue. When set to true t ext boxi o intercepts form submission to place the contents of the editor back into its original
textarea before the form submits. This process is asynchronous as t ext boxi o will wait for images to upload if required.

When t ext boxi o is not handling form submission (i.e. aut osubmi t is setto f al se), the page's form submission will be unaffected. It is then up to the
integrator to ensure that images in the content are uploaded. This process is explained in Handling Asynchronous Image Uploads.

Example Configuration

In this example, a conf i gur at i on object turns off the automatic form submission handling of t ext boxi o.

var config = {
autosubnmit: false

}s

var editor = textboxio.replace('#targetld' ,6 config);

Properties

Property Type Default Description

autosubmit | Boolean ' True True turns on t ext boxi o' s automatic form handling, and f al se turns it off.
See also

® Getting Started

® editor.content.uploadimages()

® editor.content.get()

L]

Handling Asynchronous Image Uploads

47

basePath

configuration

basePat h

This option configures the path to the t ext boxi o folder in your application. This path on the server must contain the r esour ces folder from the
unpacked textboxio.zip. The editor will attempt to detect this path automatically by searching for a script tag reference to itself, assuming that the textboxio.
zip file has been unpacked at that location.

The_editor will throw a JavaScript error and not load if a basePat h is not provided and auto detection fails.

Successful auto detection requires a script tag referencing t ext boxi o. j s. The referenced filename may be different if it is added to the page dynamically
or processed by another script / application. When this occurs it is necessary to specify a basePat h in the editor configuration.

Example Configuration

In this example, a conf i gur at i on object specifies a custom path to the t ext boxi o folder as unpacked from textboxio.zip.

Server contents:
server
path
to
t ext boxi o
resour ces
textboxio.js

var config = {
basePath : '/path/to/textboxio'
b

var editor = textboxio.replace('#targetld' , config);

Properties

Property Type Properties

basePath String A string that defines the file path to the textboxio folder.

See also

® Getting Started

48

codeview

configuration

codevi ew

This option configures the behavior of the code view feature and button. Note that it is possible to disable the code view button, but still trigger the code
view feature with edi t or . node. set (node).

This configuration attribute is ignored on mobile devices and inline editing modes. For these scenarios, the code view has been forcibly disabled.

Example Configuration
In this example, a conf i gur at i on object disables the editor code view button while leaving the feature enabled.

var config = {
codeview : {
enabl ed: true,
showButton: false

1

var editor = textboxio.replace('#targetld , config);

Properties
Property Type Properties
enabl ed Boolean t r ue to enable codeview for the editor instance. f al se to disable.

showButt on Boolean true to show the codeview button for the editor instance. f al se to disable.

Codeview Default Configuration

TheTCodeview feature is enabled by default, the default value for the enabl ed and showBut t on properties are t r ue.

For further information see Configuration Defaults.

See also

® HTML Code View

49

https://docs.ephox.com/display/tbio/configuration#configuration-defaults

CSS

configuration

Css

The confi gurati on css property defines options related to editor rendering CSS and CSS classes/elements available in the styles menu.

Example Configuration

In this example, a simple conf i gur at i on object is created that adds a rendering stylesheet to the editor, inline rendering CSS, and configures the styles
available to apply.

var config = {
css : {
docunent Styles : 'body { background: red; }',
styles : [
{ rule: 'p' },
{ rule : "hl.blue', text: 'Blue Heading 1' },
{ rule : '.green', text: 'Geen Inline Style' }
I
styl esheets : ['test.css'],
showDocunent Styles : true

3

var editor = textboxio.replace('#targetld' , config);

Properties
Property Type Value
docunent Styl es String String of CSS for rendering editor content.

Note

ThiSparameter is ignored when using inline editing (i.e. invoking the editor with t exboxi o. i nl'i ne())
showDocunent Styl es = Boolean = Whether to show content style rules in the styles drop-down menu by default. Defaults to f al se.

Full details on defining styles in content CSS is covered in the Using Your Own Document Styles article.

Note

ThiS parameter is ignored when using inline editing (i.e. invoking the editor with t exboxi o. i nl'i ne())
This APl was introduced in Textbox.io release 2.4.1

styles Array An array of available styles definitions.
styl esheets Array An array of string paths to editor rendering stylesheets.

Note: this parameter is ignored when using inline editing (i.e. invoking the editor with t exboxi o. i nl'i ne())

50

http://Textbox.io

documentStyles

configuration
css

docunent Styl es

Developers can directly use CSS to render content in classic editing mode with document St yl es. This configuration property accepts a string of CSS,
which is added to a classic editing mode editor document immediately following any stylesheets added with st yl esheet s.

The value for this attribute is ignored in inline editing mode. In this mode editor content is part of the host page DOM and is thus rendered using CSS from
the purrounding page.

Example

In the example below a configuration is created that specifies inline document CSS along with 2 custom stylesheets. Note that CSS added with docunment S
tyl es is loaded after any stylesheets added with st yl esheet s.

var configCSS = {
css |
docunent Styl es : 'body { background:red; }',
styl esheets : [
"http://exanpl e. com path/to/styles.css',
"..lrelativel/path/to/sheet.css'

1

The following is a representation of the editor document when the configuration above configuration is used.

<htm >
<head>
<link rel ="styl esheet" type="text/css" href="http://exanple.conf path/to/styles.css">
<link rel ="styl esheet" type="text/css" href="../relativel/path/to/sheet.css">
<style type="text/css">
body {
background: red
}
</styl e>
</ head>
<body>
[...]
</ body>
</htm >

51

styles

configuration
css
styles

[style]

Textbox.io enables fine-grained configuration of the styles shown on the styles drop-down menu.

styl es is an array of st yl e definitions. A st yl e is an item that appears on the styles drop-down. When clicked, the editor selection is transformed to the
r ul e defined in the style definition.

style definitions

Property Type Value

rule String The transformation to be made to the selection
t ext String (Optional) The text to appear in the dropdown list
item.

eg:"My Custom Style"

Example

In the example below a configuration is created that specifies a custom css styles array with 4 style definitions.

var config = {

css |
styles : [
{ rule: 'p' }, /1 Change sel ected el ements to paragraph el enents
{ rule : "hl.blue', text: 'Blue heading 1}, /1 Change sel ected el enents to headi ngl
el enents, apply blue class. Shown in the styles dropdown as 'Bl ue heading'
{ rule: "a.red }, Il Apply a red class to sel ected anchor el enents
{ rule: '.green" } Il Apply green class to selected el enents
]
}

3

This configuration would result in 4 options added to the block-styles drop-down:
Paragraph
Blue Heading

a.red

L]
L]
L]
* green

Styling Transformation Rules

The following intended styling actions are available, based on the syntax used when defining css styles array items.

Rule Syntax Transformation

.clazz Wrap selected text in
el Convert the block containing the selection to type el
el .clazz Convert the block containing the selection to type el with css class cl azz

Transformations are subject to some limitation, based on styling transformation rules.

52

Invalid Style Transformation Rules

Styling transformations that are dependent on the CSS cascade, attempt to apply multiple classes, or affect element IDs are not supported.

Unsupported selectors

Rule Syntax
.clazz p
p.clazz.clazz

#id

Description

Complex selectors are not supported.

Cannot add multiple classes to selected elements.

Cannot add IDs to elements.

Unsupported elements

a, enbed, hr,ing, obj ect,table, tr,ul,

span are unsupported blocks for the styles dropdown menu

For_more detail on setting available classes/transformations (configuring the block-styles drop-down) see: Using Your Own Document Styles.

Example Transformation Behaviors

Element transformations follow the following behaviors. Note that elements are separated into the following types: block, object, and inline.

Block type elements can be freely transformed into any other type of block element, while object and inline type elements may never be transformed.

When a user selects one of these options, selected elements are then evaluated against the styling transformation rules, if applicable. The results of
applying a block-style choice to selected HTML content are as follows.

Selected Content

<p>.. </ p>
<hl>...</hl>

<td><a>...<
/td>

<p>...<
| span></ p>

<p><a>...<
/p>

<p>..</p>

<hl>...</hl>

<td><a>..
/td>

. <la><
<p>...<
/ span></ p>

<p><a>...<
/ p>

<p>..</p>

<hl>...</hl>

<td><a>...<
/td>

<p>...<
| span></ p>

<p><a>...<
/p>

<p>.. </ p>

Block-Style
Rule Chosen
{ rule : 'p
{ rule: 'p
{ rule: 'p
{ rule : 'p
{ rule: 'p
{ rule : "hl.
bl ue' }

{ rule : "hl.
bl ue' }

{ rule : '"hil.
bl ue' }

{ rule ' hl.
bl ue' }

{ rule : "hl.
bl ue' }

{ rule 'a.
red }

{ rule : "a.
red }

{ rule 'a.
red }

{ rule ' a.
red }

{ rule 'a.
red }

{ rule : '
green' }

Resulting HTML

<p>..</p>

<p>..</p>
<td><a>...</td>
<p>. .. </ span></p>
<p><a>...</p>

<hl cl ass="blue">...</hl>

<hl cl ass="blue">...</hl>
<td><a>...</td>

<hl cl ass="bl ue">...<

/ span></ h1>

<hl cl ass="bl ue"><a>. .. </ a></hl>
<p>..</p>

<hl>...</hl>

<td>...</td>
<p>... </ span></p>
<p>..

. <l a></p>

<p>...<
| span></ p>

53

Description

No change.
Heading1l transformed to paragraph.

Can't transform a table cell or link (object type). No change.

Can't transform span (inline type). No change.

Can't transform anchor (object type). No change.

Paragraph transformed to heading1, blue class applied.

Blue class applied to existing headingl.

Can't transform a table cell or link (object type). No change.

Paragraph transformed to headingl, blue class applied. Can't transform

span (inline type).

Paragraph transformed to headingl, blue class applied. Can't transform
anchor (object type).

Can't transform paragraph (block type). No change.
Can't transform headingl (block type). No change.
Can't transform table cell (object type). Red class applied to existing

anchor.

Can't transform paragraph (block type). Can't transform span (inline type).
No change.

Can't transform paragraph (block type). Red class applied to existing
anchor.

Can't transform paragraph (block type). New span created. Green class
applied to new span.

<hl>...</hl> { rule : ". <hl>...< Can't transform headingl (block type). New span created. Green class

green' } / span></ h1> applied to new span.
<td><a>...< { rule : '. <t d><a>...< Can't transform table cell and anchor (object type). New span created.
/td> green' } / span></td> Green class applied to new span.
<p>...< { rule: ". <p>...< Can't transform paragraph (block type). Green class applied to existing
/ span></ p> green' } / span></ p> span.
<p><a>. .. </ a>< { rule : . <p><a>...< Can't transform paragraph and anchor. New span created. Green class
! p> green' } / span></ a></ p> applied to new span.

See Also:

® stylesheets
® documentStyles

54

stylesheets

configuration
css

styl esheets

Developers can control the CSS stylesheets used to render content in classic editing mode with the st yl esheet s array. This array should be made up of
paths to CSS stylesheets, which are loaded in order from first to last.

The value for this attribute is ignored in inline editing mode. In this mode editor content is part of the host page DOM and is thus rendered using CSS from
the surrounding page.

Example

In the example below a configuration is created that specifies 2 custom stylesheets. These sheets are then used to render editor content in classic editing
mode.

var configCSS = {
css |
styl esheets : [
"http://exanpl e. com path/to/styl es.css',
"..lrelativel/path/to/sheet.css'

}s

The following is a representation of the editor document when the configuration above configuration is used.

<htm >
<head>
<link rel ="styl esheet" type="text/css" href="http://exanple.conf path/to/styles.css">
<link rel ="styl esheet" type="text/css" href="../relativel/path/to/sheet.css">
</ head>
<body>
[...1]
</ body>
</ htm >

55

images

configuration

i mges

The i mages property controls how images are handled within a Textbox.io editor instance.
This property controls multiple behaviors:

® Uploading Images via Textbox.io's Built-in Upload Mechanism

® Uploading Images via a Custom JavaScript Upload Handler Function
® Disabling image editing, which turns on automatic image upload

® Preventing the insertion of Local Images

Properties
Property Type Default Properties
al onLocal | Boolean | true Whether to allow local images to be inserted into the editor.
editing Object Configures image editing.
upl oad Object Configures the uploading of local images to your application using Textbox.io's built in upload mechanism.

56

allowLocal

configuration
i mges

al | owLocal

A developer may choose to prevent local images from being added to an editor. When local images have been blocked, the insert image dialog does not
display the Local Files tab. If the user attempts to paste an image into the editor or use drag and drop to insert an image, an error message is displayed.

Example Configuration

In this example, a simple conf i gur at i on object is created that prevents local images from being inserted.

var config = {
i mges : {
al | owLocal : false
}
b

var editor = textboxio.replace('#targetld', config);

57

editing
configuration

i mges

editing
Configures image editing in Textbox.io.

This option was introduced in Textbox.io release 2.0.0.

Property Type Default Properties

enabl ed Boolean ' true Enables or disables the image editing feature.

When image editing is enabled inserted images are not uploaded until the editor.content.uploadimages() method is called. This is
to @Jre that editing images does not cause multiple uploads.

Disable image editing to have inserted images upload immediately.
proxy String Allows editing images from a remote server using an Image Proxy. Specify the URL to your proxy here.

The Textbox.io SDK comes with an Image Proxy service (for J2EE environments). For information on installing and configuring
this service, please see the Server-Side Components article.

preferredW Number When specified, any large local images that are inserted will be scaled down to fit within this width.
idth

preferredH = Number When specified, any large local images that are inserted will be scaled down to fit within this height.
ei ght

Examples

In this example, a simple conf i gur at i on object is created that turns off image editing.

var config = {

i mges : {

editing : {
enabled : false

}

}

1

var editor = textboxio.replace('#targetld , config);

Proxy

In this example, a proxy is set to allow editing images from remote servers.

var config = {
imges : {
editing : {
proxy : "http://YOUR- DOVAI N ephox-i mage- proxy/ i mage
}
}
h

var editor = textboxio.replace('#targetld', config);

Restricting image size

When image editing is enabled local images above a certain resolution can be automatically scaled down to a preferred size. Aspect ratio is maintained; in
the following example the editor is configured with both preferred width and height at 1000, which means:

* A wide image at 2000x1000 will be resized to 1000x500

58

http://Textbox.io

® Atall image at 1000x2000 will be resized to 500x1000

var config = {
i mges : {
editing : {
preferredWdth : 1000,
preferredHei ght : 1000

}s

var editor = textboxio.replace('#targetld' , config);

59

upload

configuration
i mges

upl oad

Configures the uploading of local images to your application using Textbox.io's built in upload mechanism.
This property can be configured to either:

® Upload Images using a form POST
® Upload Images via a Custom JavaScript Upload Handler Function

Properties

To use Textbox.io's built-in upload mechanism, use upl oad. ur |, upl oad. basePat h, and upl oad.cr edenti al s.

Property Type Default Properties
url String Defines the location of your POST acceptor script. This is the URL to which images will be uploaded.
basePat h String [Optional] Defines the base path of images uploaded in your application. This path is combined with the path returned from your

POST acceptor script.

credentia Boolean false [Optional] t r ue: sends cookies with the upload POST (sets the XHR credentials flag). f al se: does not send cookies.
I's

To use a custom JavaScript handler function, use upl oad. handl er . Note that defining upl oad. handl er disables Textbox.io's built in upload
mechanism.

Property Type Default Properties

handl er Function Configures the uploading of images to your application using a custom Javascript upload handler.

Examples

Using Textbox.io's Built-in Upload Mechanism

The simplest way to handle images is use automatic background uploads. A simple conf i gur at i on object is used to define the upload location for
images. basePat h is used in conjunction with the value returned by the POST handler to link to the uploaded image within the editor's content. More
information is available in the Handling Local Images guide.

var config = {

imges : {
upl oad : {
url : "http://exanple.conl path/to/ POSTAcceptor. php',
basePath : 'http://exanple.com path/to/imges’
}
}

1

var editor = textboxio.replace('#targetld , config);

Using a Custom JavaScript Upload Handling Function
If images must be uploaded using more than a simple HTTP POST, the entire upload process can be replaced. For example, you may wish to perform

additional client side validation or manipulation on the images prior to their upload. The handler function is passed three arguments; Data (object),
Success (function) and Failure (function).

Data Object Properties

The first argument is an object providing information about the image that has been inserted. All properties are functions.

60

Property Function Type Description
dat a. bl ob() Blob JavaScript Blob instance representing the image binary data
dat a. base64() String A copy of the image binary data pre-converted to base64 for your convenience
data.fil enanme() String The actual filename, where possible, otherwise a generated filename based on the MIME type

data.id() String A unique identifier for this image

Success Function Parameters

The second argument is a function that indicates the upload has successfully completed

url | String = The URL to use as the image src. No post-processing is performed on this value (the basePat h configuration property is ignored).

Failure Function Parameters

The third argument is a function that indicates the upload failed.

messa | String A message to display to the user in an error banner.

ge (optional)
This value is optional - if you do not wish to translate your error a generic message is available which has been translated into
all supported languages.

var config = {
i mges : {
upl oad : {
handl er : function (data, success, failure) {
/'l For exanple, if myuploader.upload() returns a prom se, e.g. jQuery ajax
myupl oader . upl oad(dat a. bl ob(), data.filename()).then(function (<upload
response>) {
success(<response inmage url>);
}, function () {
failure("my failure nmessage");

1)

}s

var editor = textboxio.replace('#targetld , config);

61

https://developer.mozilla.org/en/docs/Web/API/Blob

links

configuration

I'i nks

The confi guration |inks property defines options related to edi t or hyperlink behavior.

Properties
Property Type Default Properties
val i dati on ' Object Configuration values for hyperlink URL validation

62

embed

configuration
I'i nks

enbed

The confi gurati on enbed property defines options related to edi t or link embed behavior. When configured, the editor will embed links inserted into
the editor on pressing the enter key or paste.

This option was introduced in Textbox.io release 2.2.0.

Example Configuration

In this example, a simple conf i gur at i on object is created to define a link validation service.

var configLinks = {
links : {
enbed : {

url : "http://yourlinks.server.com ephox-hyperlinking/'

—~

3

var editor = textboxio.replace('#targetld', configLinks);

Properties

Property Type Value

url String URL to the link embed service. For more information on the validation service, please see the services Installation and Setup
section.

Services Disabled by Default

TeXtox.io services are not enabled by default. Defining service urls enables those services and their respective client components. For more details, see:
Server-Side Components.

63

http://Textbox.io

validation

configuration
I'i nks

val i dati on

The confi guration validati on property defines options related to edi t or link validation behavior. When configured, the editor will validate links
inserted into the editor. Invalid links will be marked with a red dotted border.

Example Configuration

In this example, a simple conf i gur at i on object is created to define a link validation service.

var configLinks =
links : {
v

{

alidation : {
url : "http://yourlinks.server.com ephox-hyperlinking/'

1

var editor = textboxio.replace('#targetld', configLinks);

Properties

Property Type Value

url String URL to the link validation service. For more information on the validation service, please see the services Installation and Setup
section.

Services Disabled by Default

TexXtbox.io services are not enabled by default. Defining service urls enables those services and their respective client components. For more details, see:
Server-Side Components.

64

http://Textbox.io

Macros

Textbox.io ships with built-in macros that aim to improve the user editing experience. They are all enabled by default; this configuration setting can be used
to control which macros are enabled. Additional macros can be added using the editor.macros runtime API.

While these macros are in all versions of the editor, this API to control them was introduced in Textbox.io release 2.4.1

Available macros

The built-in macros are grouped into into sets based on the type of tags they produce. Markdown macros are also listed in the Textbox.io help dialog for
user reference; disabling a macro set does not however adjust the contents of the dialog.

Headings

This macro set converts Markdown heading syntax into H1-H6 tags.

Syntax HTML result
Largest Heading <hl>Lar gest Headi ng</hil>
Larger Heading <h2>Lar ger Headi ng</ h2>
Large Heading <h3>Lar ge Headi ng</ h3>
Heading <h4>Headi ng</ h4>
Small Heading <h5>Smal | Headi ng</ h5>

#HH#H Smallest Heading + <h6>Smal | est Headi ng</ h6>

Lists

This macro set converts Markdown list syntax into UL and OL tags.

Syntax HTML result

* Unordered list | <ul style="list-style-type: disc">Unordered List</Ii>

1. Ordered list | <ol style="list-style-type: decimal">Odered List

a. Ordered list | <ol style="list-style-type: |ower-alpha">Odered List
i. Ordered list <ol style="list-style-type: lower-roman">Ordered List
1) Ordered list | <ol style="list-style-type: decimal">Odered List

a) Ordered list | <ol style="list-style-type: |ower-al pha">Odered List
i) Ordered List | <ol style="list-style-type: |ower-alpha">Odered List

Semantics

This macro set converts variations of the markdown Italic and Bold syntax into EM and STRONG tags.

Syntax HTML result
|talic <enpltalic</enr
ltalic <enpltalic</enm
*pold** Bol d</ strong>

__bold__ | Bol d</ strong>

HR

This macro converts a triple dash into a HR tag.

65

Syntax HTML result

<hr />

Entities

This macro set offers a convenient shorthand for a few HTML entities

Syntax HTML result Character

(c) © ©
-- – —
- – —
Link

This macro implements the editor autolink feature.

Syntax HTML result

http://ephox.com | http://ephox.com

www.ephox.com | www.ephox.com>

Properties

Property Type Value

al | owed Array An array of built-in macros that are allowed (any macro not in this list is disabled).

Example Configuration

This example shows the default macro configuration where all built-in macros are enabled.

var config = {
macros: {
allowed : ['headings', 'lists', 'semantics', 'entities', "hr', "link']

1

var editor = textboxio.replace('#targetld' , config);

See Also

Macros: Writing Content-Aware Code

66

https://docs.ephox.com/display/tbionext/Macros%3A+Writing+Content-Aware+Code

paste

configuration

past e

The confi gurati on past e property defines options related to edi t or paste behavior.

Example Configuration

In this example, a simple conf i gur at i on object is created that overrides the default paste behavior. The simple conf i gur at i on object is then passed
to repl ace tocreate anedi tor.

var configPaste = {
paste : {
style : 'clean', [// Overrides default: 'pronpt' for MS Ofice content
enabl eFl ashl nmport: true // Note, true is the default

I

var editor = textboxio.replace('#targetld , configPaste);

Properties
Property Type Default Values
style String ‘prompt’ ‘clean’, 'retain’, 'plain’ or ‘prompt’
enabl eFl ashl nport Boolean ' true false or true
Style Values

Value Description
prompt | (Default for importing MS Office content)
A prompt is displayed to the user on paste. The prompt asks the user to either remove or retain inline CSS styling.
clean Inline CSS styling is stripped from pasted content.
plain Only the plain text clipboard content is pasted, if any is available
retain (Default for all other content)

Inline CSS styling is retained in pasted content.

Enable Flash Import

This option was introduced in Textbox.io release 1.3.1
On some browsers, a flash plugin is used to extract images when pasting from MS Office documents. On these browsers the use of flash can be disabled.

This option has no impact on browsers that do not require flash; on those browsers images will still be included. To disable local image pasting completely
use the allowLocal configuration option.

Value Description
true Allow flash to be used to extract images when pasting from MS Office documents
false On browsers that require flash, no images will be pasted when copying and pasting from MS Office documents.
If there are images in the document, the user will see a warning that images were blocked.

Other content will still be pasted as normal.

67

Inline CSS styling is CSS that is applied directly to HTML elements via the HTML style attribute (W3C).

Protected View

Not€: When using the Windows operating system, copying and pasting content from Word 2013 or later in Protected View will result in plain, unformatted
text. This is due to how Protected View interacts with the clipboard.

68

http://www.w3.org/TR/1999/REC-html401-19991224/present/styles.html#h-14.2.2

spelling

configuration

spel l'ing
The spel | i ng property defines the location of Textbox.io server-side spelling service.

Example Configuration

In this example, a simple conf i gur at i on object is created that defines the location for the Textbox.io Server Components spelling service for an editor
instance. The configuration is used to generate an editor via r epl ace.

var config = {
spelling : {
url : "http://yourspelling.server.conl ephox-spelling/"',
autocorrect : true

}s

var editor = textboxio.replace('#targetld , config);

Properties
Property Type Properties
url String A URL string that defines the endpoint for the Server-Side Components spelling service.

aut ocorrect | Boolean @A boolean value to enable spelling autocorrect by default

Services Disabled by Default

Textbox.io services are not enabled by default. Defining service urls enables those services and their respective client components. For more details, see:
Server-Side Components.

69

https://docs.ephox.com/display/serversidecomponents/Spell+Checking

ul

configuration

ui

The confi gurati on ui property defines options related to the editor Ul, and allows for the configuration of the edi t or toolbar.

Properties

ari a- | abel
aut or esi ze

col ors

fonts

| anguages
| ocal e
shortcuts

t ool bar

String

Boolean

Object

Array

Array

String

Boolean

Object

Text to use for the editor's ARIA label instead of the default

Automatically scale the vertical height of the editor to fit the content

Specifies the list of colors available to the editor

Specifies the list of fonts available to the editor

Specifies available language codes that can be applied to content for internationalization (HTML | ang attribute)

Specifies editor Ul language

Whether to enable content keyboard shortcuts

An object representing the desired toolbar functionality for an edi t or .

70

http://www.w3.org/TR/html401/struct/dirlang.html#h-8.1

aria-label

configuration
ui

ari a- | abel

The ui aria-label property defines the editor's ARIA label. The editor's ARIA label identifies the editor to screen readers and other assistive devices.

Default label

If no label is configured, the default ARIA label is "Text box. i 0o Ri ch Text Editor - <id>"where <i d>isthe ID attribute of the element used to
load the editor. When the editor fullscreen feature is used, this changes to "Text box. i o Full screen Rich Text Editor - <id>".

If no ID is available on the target element and the default label is in use, a random 6 digit number is used instead.

The default ARIA label is translated into all supported languages, and will match the locale of the editor.

Configured label

If a label is configured none of the above translation or referencing the target element ID is performed. The string is used exactly as configured.

Example Configuration

In this example using default configuration, the ARIA label will be "Text box.i o Ri ch Text Editor - bl og"
<di v id="bl og"></div>
<script type="text/javascript">

var editor = textboxio.replace('#blog');
</script>

In this example, a simple conf i gur at i on object is created that specifies a custom ARIA Label.

The ARIA label will be "Post Body Text ", as none of the default label is included in this scenario.

var configU = {
ui: {
"aria-label': 'Post Body Text'
}
b

var editor = textboxio.replace('#targetld' , configU);

71

http://www.w3.org/TR/wai-aria/states_and_properties#aria-label

autoresize

configuration
ui

aut oresi ze

The autoresize attribute, when set to true, causes the editor's height to automatically scale to the fit the content inside. The editor's height will match that of
the content, with height increasing and decreasing as the content changes. Vertical scrollbars will never appear.

This option was introduced in Textbox.io release 2.4.1
Sticky
1

Ena'bling autoresize will automatically enable ui.toolbar.sticky, unless overridden, to ensure the toolbar is still usable if the editor grows taller than the
window.

Example Configuration

In this example, a simple conf i gur at i on object is created that enables autoresize for the edi t or created by repl ace.
var config = {

ui o {

autoresize : true
I

var editor = textboxio.replace('#targetld , config);

72

colors

The textbox.io color widget offers customisation to adjust the available colour buttons. These changes apply to all features where the widget is used:
® Font and Highlight color
® Table Cell Border
® Table Cell Background

The widget will grow or shrink vertically as required to accomodate the list of colors. The column count is not configurable.

This APl was introduced in Textbox.io release 2.4.1

The custom colour picker was added in Textbox.io release 2.4.2

Default colors

The default set of colors includes a color name used for the tooltip and ARIA label. These names are translated to all supported languages, and the API
allows use of these translations. To use a translated name, set the text of a custom color to one of the Tr ansl ati on Key entries from this table;
translation even works if the text is not provided but the color matches a translation key.

Text

Highlight

[BN
]

Custom...

N EE

EEE]
I

The default colors, in order, are:

HTML color value

Translation Key

English Color Name

#FFF white White

#000 black Black

#444 gray Gray

#1777 metal Metal

#CCC smoke Smoke
#FCLDOO red Red
#C81500 darkred Dark Red
#FF8C00 darkorange Dark Orange
#FEBEOO orange Orange
#FFFC00 yellow Yellow
#22AE50 green Green
#006400 darkgreen Dark Green
#3CB371 mediumseagreen Medium Sea Green
#8FCD4E lightgreen Light Green
#00FFO0 lime Lime
#0000CD mediumblue Medium Blue

73

#002360 navy Navy

#0173C1 blue Blue
#14B2F2 lightblue Light Blue
#EE82EE violet Violet
Properties
Property Type Default Value
but t ons Array All colors listed above, in order = An array of color button objects to show on the widget
custom Boolean | true Whether to show a custom color picker option below the buttons

Color Button objects

Property Type Value
val ue String The HTML color representation. This string will be set as the color in the document without additional processing.
While the default colors all use hex representation, any valid HTML color value can be used.
t ext String (optional) = Text representation used for the tooltip and ARIA label of the color button. See note above about translations.

If no text is provided, the col or string is used as the t ext string.

Example Configuration

This example demonstrates a color configuration where a single row of 5 buttons are shown.

The first three take advantage of the fact that translation keys are also valid HTML color names. The fourth supplies a custom string, and the fifth replaces
one of the built-in colors by using a custom color value and a translation key for the text.

74

fonts

configuration
ui

fonts

The ui fonts property defines the list of available fonts from the fonts dropdown menu.

The fonts property accepts an array of strings that define font-face values. These font-face values are then seen in the editor font menu. Note that font-
face values may contain font fallbacks if you so choose.

For more advanced use cases, the fonts property can also accept an array of objects. Each object should contain a value and text property. The value
property defines the font-face value, while the text property defines the visible label given to the font-face value in the editor font menu.

Simple Example

If strings are provided to the fonts array, the editor will use these values to construct available font-face values in the font menu. Note that these strings will
be displayed in the font menu Ul unchanged.

Easy configuration

/I Create a sinple font nenu configuration with sone single font choices and a font fallback
var configU = {
ui o {
fonts : ['Helvetica', 'Arial', 'Tinmes New Ronan', '"Comic Sans MS', cursive, sans-serif']

3

var editor = textboxio.replace('#targetld' , configU);

Advanced Example

If objects are provided to the fonts array that define a value and text, the editor will use the value property to define the CSS font-face to apply while
displaying the font menu item in the Ul with the text provided. This allows you to customize the display names of fonts available in the font menu.

Full configuration

var configU = {

ui |
fonts : [
{
val ue: '"Com c Sans MS', cursive, sans-serif',
text: "Asilly font’
H
{
val ue: 'Tahonma' // equivalent to providing just a string
H
"Arial', // you can use a mxture of objects and strings
{
val ue: 'Helvetica',
text: "A nicer font'
}
]
}

}s

var editor = textboxio.replace('#targetld , configU);

Advanced Object Properties

75

val ue ' String = The font name

text

String = Optional display name for the font.

When not provided, the value is used as the text.

76

languages

configuration
ui

| anguages

The languages array lets a developer specify one or more language codes that can be applied to HTML content for internationalization. Adding the
languages configuration won't add automatically the language button to the toolbar which needs to be specified as explained in the command and id's
section here.

This array directly configures the languages available for application in the languages menu. Selecting a language from the languages menu sets the HTML
| ang attribute for text selected in the editor.

Setting the languages configuration array overrides the | anguages array defaults.
Note that only some languages have their names translated into all Textbox.io Ul languages (see Translated Language Codes below). A developer may

choose to apply languages codes from this list, or specify any 2 or 4 letter language code. When specifying a language code that is outside of the
translated language codes list (like 'x-klingon'), that language code will appear in the language menu.

Example Configuration

In this example, a simple conf i gur at i on object is created that specifies which languages to use in the language menu. Note, as mentioned before, not
all of these language codes will be translated by Textbox.io.

var config = {

ui: {
| anguages : [/1 Languages array, sets the available |anguages to apply
fre, /1 French
‘fr_ca', /1 French (Canadi an)
‘en_gb', /1 English (United Ki ngdom
'x-klingon' // x-klingon : klingon
]
}

1

var editor = textboxio.replace('#targetld , config);

Properties

Property Type Properties

languages = Array array of string language codes

Defaults

Language Language Code String

English en
Spanish es
French fr
German de

Portuguese | pt

Chinese zh

Translated Language Codes

Language Language Code String

7

http://www.w3.org/TR/html401/struct/dirlang.html#h-8.1
http://www.w3.org/TR/html401/struct/dirlang.html#h-8.1

Arabic

Catalan

Chinese

Chinese (Simplified)
Chinese (Traditional)
Croatian

Czech

Danish

Dutch

English

English (Australia)

English (Canada)

English (United Kingdom)

English (United States)
Farsi

Finnish

French

French (Canada)
German

Greek

Hebrew

Hungarian

Italian

Japanese

Kazakh

Korean

Norwegian

Polish

Portugese
Portuguese (Brazil)
Portuguese (Portugal)
Romanian

Russian

Slovak

Slovenian

Spanish

Spanish (Latin America)
Spanish (Spain)
Swedish

Thal

Tartar

ar
ca

zh
zh_cn
zh_tw
hr

cs

da

n

en
en_au
en_ca
en_gb
en_us
fa

f

fr
fr_ca
de

e

he

hu

ko

no

p

pt

pt _br
pt _pt
ro

ru

sk

s

es
es_419
es_es
sv

th

tt

78

Turkish

Ukrainian

tr

uk

79

locale

configuration
ui

| ocal e

The locale attribute lets a developer choose a language Ul translation from one of the 33 available languages by specifying its locale string.

By default, the editor language is automatically set according to the client browser's language. The locale property allows the developer to specify an editor
Ul translation directly, overriding the browser's default language.

Mu(ljrisle Locales
Usifig more than one unique value for editor locale on a page is not currently supported. This includes configuring one editor to use the browser default
and another to use a specific value via this API.

Example Configuration

In this example, a simple conf i gur at i on object is created that defines the locale for the editor Ul for the edi t or created by repl ace.

var config

ui o {

1
-~

locale : "fr' //sets the editor | anguage to french
b

var editor = textboxio.replace('#targetld' , config);

Properties

Property Type Properties

| ocal e String locale short code: e.g en for English

Supported Locales

Language Locale String
Arabic ar
Catalan ca

Chinese (Simplified) | zh

Chinese (Traditional) zh_tw

Croatian hr
Czech cs
Danish da
Dutch nl
English en
Farsi fa
Finnish fi
French (Europe) fr
German de
Greek el

80

Hebrew

Hungarian

Italian

Japanese

Kazakh

Korean

Norwegian

Polish

Portuguese (Brazil)
Portuguese (Europe)
Romanian

Russian

Slovak

Slovenian

Spanish

Swedish

Turkish

Thai

Ukrainian

he

hu

ko
no
pl
pt _br
pt_pt
ro
ru
sk
sl
es
sv
tr
th

uk

81

shortcuts

configuration
ui

shortcuts

The ui shortcuts property turns editor content keyboard shortcuts on or off. Content keyboard shortcuts include any keyboard shortcut that directly affects
the contents of the editor (eg: indending, marking bold text, etc).

This property is true by default. When set to false, most of the editor keyboard shortcuts will be disabled. The following shortcuts are not affected by this:

undo

redo

focus toolbar

open context menu

Use of this property does not alter the toolbar, it just deactivates the keyboard shortcuts.

Example Configuration

In this example, a simple conf i gur at i on object is created that disables editor content keyboard shortcuts.

var configU = {
shortcuts : false

1

var editor = textboxio.replace('#targetld , configU);

82

toolbar

configuration
ui

t ool bar

The ui tool bar property defines options related to editor toolbar commands, groups and child menus.

Context toolbar items

These items currently appear at the end of the toolbar. Specific configuration is not available as they may move to a different part of the Ul in a future
release. They can however be disabled:

var custonifool bar = {
contextual : []
b
var config = {
ui : { toolbar : custonflool bar }

}s

var editor = textboxio.replace('#targetld , config);

Example Configuration

In this example, a custom toolbar object with two custom toolbar buttons is created and added to a conf i gur at i on object via the ui toolbar
property. This config is then used to create an edi t or by repl ace.

83

var cust onmrool bar

items @ [
{
| abel :
itens:
}
{
| abel :
itens:
{
}
1
b
{
| abel :
itens:
{
3
{
}
1
}
1
b
var config = {
ui : { tool bar

}

var editor = textboxio.replace('#targetld',

Properties

Item Properti
es

itens Array

contextu Array
al

vi sible Boolean
(den)

draggabl e Boolean
(demo)
of f set Position
top

left

(demo)

" Undo and Redo group',

["undo', 'redo']

"Insert group',

[

id "insert',

| abel '‘lInsert Menu',

items : ['"link', "fileupload', '"table']

' Cust om Tool bar G oup',

[

id

t ext
icon
action :

id

t ext
icon
action :

cust onTool bar }

Default

(Default Toolbar)

["table-tools',"'image-
tools']

true

true

top: O, left: 0

‘custontl',

' Custom Button 1',

'/ path/tol/iconl. png',

function () { alert('CustomButton 1 dicked); }

‘custon?',

'‘Custom Button 2',

'/path/to/icon2.png',

function () { alert('CustomButton 2 Cicked); }

config);

Description

An array representing the structure of the Textbox.io toolbar and menu system. Each item represents a
toolbar group.

An array listing the items that can appear depending on the selection context

Inline editing only. Whether the toolbar should be visible in the Ul at all.

Inline editing only. Whether the editor should be draggable from its offset position.

Inline editing only. The offset coordinates of the toolbar from the top-left vertex of the container being
edited.

84

http://textbox.io/
http://jsfiddle.net/textboxio/zo2y0wse/3/light/
http://jsfiddle.net/textboxio/n3et4nex/1/light/
http://jsfiddle.net/textboxio/mh7zw72c/1/light/

sticky Boolean ' the same value as ui.autoresize

ltems

Iframe editing only. Whether the toolbar should stick to the top of the window as it scrolls, similar to
Inline editing behaviour.

This option was introduced in Textbox.io release 2.4.1

Toolbars are made up of item objects. Items represent either editor commands (apply bold), toolbar groups, or menus.

Items infer their Ul from their position in an the items array. An item placed inside a menu will be rendered as a menu item, while an item placed inside
a toolbar group will be rendered as a button. Similarly, a menu item placed within a menu will result in a sub-menu.

Iltem Types

Iltems have 3 distinct types, representing ui constructs in a Textbox.io editor. conmand items represent discrete editor functionality. menu items
represent a nested group of commands invoked from a root Ul element. gr oup items represent logical groupings of comrands either inside the

toolbar or within menus.

Item Properties

conma

nd id Str Idstring for the command.

ing

te Str | (Optional) Friendly name of the
xt | ing command, shown in tooltips.

i c | Str | Path to the icon used to
on ing represent the command.

ac Fu A function to be executed when
ti nc the command is invoked via user
on tion action.

id S Idstring for the menu.
tr

ing
S | (Optional) Friendly name of the

tr ' menu, visible to assistive devices
ing per WAI-ARIA.

oo

n

Path to the icon used to represent
tr = the command.
on ing

o

A Array of command or menu items.
rr

ay

3o~

group S | (Optional) Friendly name of the

tr | menu, visible to assistive devices
ing per WAI-ARIA.

oo

A | An array of command or menu
o items.

ay

® —~+ =

ns

Built-In Command Item IDs

Description

Command type items represent discrete editor commands, such as: apply bold, insert
link, etc.

Note that built-in command items are referenced by their string id rather than specified
as objects.

Menu type items represent groupings of commands in a menu. When rendered, menus
appear on the host toolbar as an icon, or on a host menu via an icon followed by the
menu's name.

For users of assistive devices, the name of the menu is applied to menu's aria-label per
WAI-ARIA.

Group type items represent logical groupings of commands on a toolbar or within a
menu. When an editor is rendered groups are designated by visual separators.

For users of assistive devices, the name of the group is applied to group's aria-label per
WAI-ARIA.

Bu(ll'Tl’—)ln editor commands are represented by a predefined string id in toolbar configurations. For a list of built-in editor command ids see: Command

Item IDs.

Items Array Structure

85

http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria

The toolbar items array is the primary Toolbar Items Array Structure
way to configure toolbars, menus and
buttons for a Textbox.io editor
instance. The items array can be set to
one or more toolbar group

Tool bar Itemns
Tool bar G oup(s)

objects. These group objects can Command | ten(s)

themselves be populated with further Menu Itent(s)

items to create toolbar buttons and Comrand |ten(s)
menus in a rendered editor. Menu |tens(s)
Group ltems

Group Item Example
Group items are objects that consist of

a string name and an items array. var items = [
.) /1 Sinple Tool bar group object with 2 function |IDs
The items array may contain Command { m 9 P obl
Item IDs or command item objects. | abel ' Tool bar Group 1
: u ,
items : ['undo', 'redo']
}

Command Items
Command Item Example

Command items are objects that

consist of a string id, a string name, a /1 Cormmand |tem Obj ect

string path to an icon resource, and an var customtem = {

action function.

id : 'custonml',
When command items are placed in a t ext : ' Custom Bu.t ton 1°,
i con : '"/path/toliconl. png',

toolbar group, their functionality will be
represented on an editor toolbar with a }:
button. The button will will contain the '
specified icon image. var items = [

) {
When command items are placed /]
within a menu item object, their
functionality will be represented with a
menu item. The menu item will contain
the specified icon image and the name }
string. I

action : function () { alert('CustomButton 1 Cicked); }

Tool bar group object with custom comand
| abel : 'Tool bar Group 2',
items : ['undo', 'redo', customteni

When a user clicks on the button
(toolbar) or menu item (menu), the
function specified in action will execute.

Menu Items
Menu Item Example

Toolbar menu items are objects that

consist of a string id, a string name, a /1 Menu Item Cbject with 2 function IDs
string path to an icon resource, and an var custonMenultem = {

items array. id : 'custonl',

The items array may contain Command label Custom Menu’, .
Item IDs or command item objects. icon @ '/path/to/iconl.png",
itens : ['bold, 'italics'] }
b
Nested menus are only supported to . . Lo .
th(?;)cond level. /1 ltems array with one group object containing 2 function IDs and a
custom menu item obj ect
var items = [

{ /1 Tool bar group object with custommenu item
| abel : 'Tool bar Group 2',
items : ['undo', 'redo', customMenulteni

}

86

http://textbox.io/

See Also

® Editor types - Classic vs Inline

87

Command Item IDs

Built-in editor commands are represented by a string ID in Textbox.io toolbar configurations. The following built-in command item IDs are available for use
in any Textbox.io instance. Adding a command via its ID to a menu structure adds that feature to the toolbar or menu.

New in 2.4

In rélease 2.4 special labels were added to aid in creating groups and menus very similar to the default, for example to recreate a default group without
one of the items. These labels can be used to leverage the Textbox.io translations for both tooltips and ARIA labels.

These labels are documented below.

Group IDs

ID

undo

insert

style

enphasi s

align

i stindent

f or mat

tools

| anguage

Commands included

undo, redo

insert

style

bold, italic, underline
al i gnnent

ul, ol, indent, outdent,
font-nenu, renoveformt

find, accessibility,

I anguage, Itrdir, rtidir

Command IDs

ID

undo

redo

Function Description

Trigger undo.

Trigger re-do.

fullscreen,

Appearance

T E

88

usersettings

Appearance

4

insert

i nk

bookmar k

fileupl oad

tabl e

speci al char

medi a

hr

styles

bol d

italic

underline

stri ket hrough

superscri pt

subscri pt

Default insert menu.
Included commands:

i nk, bookmark, fileupload,
table, nedia, hr, special char

Open link insertion dialog.

Insert bookmark.

Open file/image upload dialog.

Open table insertion menu.

Open special character chooser dialog.

Open media embed insertion dialog.

Insert horizontal rule.

Open style menu.

The list can be configured with the styles configuration option.

Apply bold to selection.

Apply italic to selection.

Apply underline to selection.

Apply strikethrough to selection.

Apply superscript to selection.

Apply subscript to selection.

Styles M... ~

& Link...

R Bookmark...

ad Image...

Media...

m

Table >

o | H

Special Character...

Horizontal Rule

89

al i gnnent Open modify element alignment menu. E
ul Change selection to un-ordered list. E
ol Change selection to ordered list. E
i ndent Add indent to selection. E
out dent Remove indent from selection. E
bl ockquot e Apply blockquote to selection. H
font-nenu Default font transformation menu. m
Included commands:

font-face, font-size, font-color, Arial ?
superscript, subscript, strikethrough
16px 4+ -
&£ Color »
x' Superscript
¥, Subscript

S Strikethrough

font-face Select the font-face value from a list.

> Arial
The list can be configured with the fonts configuration option.
Comic Sans MS

Consolas

font-size Shows the font-size widget.
13px + -

font-col or Shows the font-color widget.

90

r enovef or mat Remove formatting from selection.

find Toggle inline find and replace dialog

accessi bility | Accessibility checker

full screen Toggle full-screen mode.

wor dcount Open word count dialog. E

usersettings Open user settings menu.
Included commands:

® wor dcount
® feature toggles such as spelling and capitalisation

® help
I 'anguage Open the language application menu.
I
The list can be changed with the languages configuration option.
English
Spanish
French
German

Portuguese (Brazil)

Chinese (Simplified)

Itrdir Toggle left to right text direction. n

rtldir Toggle right to left text direction.

1]'1

91

Context Features

These items are currently appended to the end of the toolbar. These features are not directly configurable but they can be disabled in the toolbar
configuration.

Table Toolbar

The features for table cell styling appear when one or more table cells are selected:

Cell Background Color

Cell Border Color .
r

Cell Border Width

Cell Vertical Alignment

Tt AlignTop
<+ Align Middle

4 Align Bottom

Image Editing Toolbar

The features for image editing appear when an image (and only an image) is selected:

Crop Image

Rotate Left 90°

Rotate Right 90°
!

Horizontal Flip

Vertical Flip

Translated labels

To aid with the creation of custom menus and toolbar groups, the editor translations can be leveraged through special labels. English is shown here as an
example but the appropriate language for the editor Ul will be used.

Group labels

For each Group ID, "gr oup. " is prepended to the name.

Group ID special label value English ARIA label

92

undo group. undo Undo and Redo group

insert group.insert Insert group
style group.style Styles group
enphasi s group. enphasi s Formatting group
align group. align Alignment group

listindent group.listindent | Listand Indentgroup

f or mat group. f or mat Font group

tool s group.tools Tools group

| anguage group. | anguage Language group
Menu labels

The two menus on the default toolbar that contain configurable items also have translations available.

Command ID special label value English ARIA label

insert menu. i nsert Insert Menu

f ont - nenu menu. f ont Font Menu

Example Configuration

In this example, a simple conf i gur at i on object is created that specifies a custom toolbar using built-in command ids for an edi t or created by repl a
ce. It uses translated labels to create an experience matching the default undo group and insert menu but with a shorter menu.

var configBuiltln = {

ui o {
tool bar : {
items : [
{
| abel : ' group.undo',
// Built-in Command ids: 'undo', 'redo'
items: ['undo', 'redo']
H

{

| abel : 'group.insert',

itens: [

{
/] Built-in menu id: 'insert'
id : 'insert',
|abel : 'nenu.insert',
// Built-in command ids: 'link', 'fileupload , 'table'
items : ['link', "fileupload', 'table']
}
]
}
]
}
}

}s

var editor = textboxio.replace('#targetld , configBuiltln);

93

editor

Textbox.io Editor instances are represented by edi t or . Instances are created by repl ace, replaceAll, inline,and inlineAll. Youcan also
get editor instances by calling the get or get Act i veEdi t or () methods.

The editor instance allows you to interact with a specific editor's editor.content and editor.events.

Properties

edi tor.content = Groups methods relating to an editor instance's content.
editor.events | Groups methods relating to an editor instance's event model.
editor.filters Groups properties relating to an editor instance's content filters.
edi tor. nacros Groups properties relating to an editor instance's macros.

node Provides methods to set/get the editor's mode to either code vi ewor desi gn view.
See HTML Code View for more information.

Methods

el ement | Returns the editor container DOM element.
focus Focus a Textbox.io editor instance.

nmessage | Display a message banner in the editor Ul.

rest ore Removes this Textbox.io Editor instance from its DOM element.

Note

get returns arrays of editor instances. The examples in this section assume a single editor - the first editor instance in the returned array.

/'l Retrieve the first editor instance in the returned array
var editors = textboxio.get('textarea');
var editor = editors[O0];

94

editor.content

eGroups together functions related to the content of a Textbox.io Editor instance.

Properties

editor.

content.

Methods

edi tor.

editor.

editor.

edi tor.

editor.

editor.

edi tor.

content.

content.

content.

content.

content.

cont ent

cont ent

sel ecti on | Methods for working with selected content in the editor

get ()

set ()

docunent El enent ()

i nsert Ht nl At Cursor ()

isDirty()

.setDirty()

. upl oadl mages()

Deprecated methods

Retrieves the HTML contents of an instance's content <body> element.
Sets the HTML contents of an instance's content <body> element.
Retrieves the editors HTML Document Object.

Inserts HTML at the last known cursor position in an instance.

Check if the content has been updated or changed since it was set.

Set the content dirty state.

Adds Base64 images to the Textbox.io Services upload queue.

editor.content. get Sel ect edText has been deprecated in favour of the selection getText method

95

editor.content.set()

Set the HTML content of an instance's <body> element with edi t or. cont ent . set ().

Example

editor.content.set(html)

/'l Set the HTML content of an instance
var contentToSet = "<p>Any HTML Content</p>";
editor.content.set(contentToSet);

Parameters

htm String Specify the HTML to which the editor’'s contents will be set as a string.

Returns

No return value.

Injecting Content into JavaScript

If yGU are using a server side programming language to inject your content you need to make sure that the result of your code creates valid JavaScript. For
example, if you use this in a JSP:

var content = "${nmyObject.content}";

you will create invalid JavaScript if ${myObject.content} contains any double quotes and/or carriage returns and/or line feeds. If ${myObject.content} had a
double quote you would end up with this:

var content = "<p>This is content with "quoted content" in the paragraph</p>";

As you can see the double quotes in the content leads to a malformed string. CR/LF characters will create similar issues as the string would stretch over
multiple lines. To avoid these issues you should remove CR and LF characters and escape any other characters that could cause issues for a string.
These include:

® Single quote
® Double quote

How you escape these characters is specific to the server side language you are using but all popular server side languages provide the ability to escape
characters in strings.

96

editor.content.get()

Retrieve the HTML contents of an instance's <body> element with edi t or. content. get ().

Im€§ Uploads
Local images are not guaranteed to be uploaded when this APl is used. If they have not been uploaded, image data will be returned in base64.

For more information, see the Handling Local Images and Handling Asynchronous Image Uploads articles.

Example

editor.content.get()

/'l Retrieve the HTM. content of the instance as a string
var content = editor.content.get();

Returns

BODY HTM. @ String = The HTML content of the instance's <body> element as a string.

97

editor.content.insertHtmIAtCursor()

Insert HTML content at the cursor position with edi t or. content. i nsert H m At Cursor ().

Content is inserted at the last known cursor position, regardless of whether the editor has focus.

Example

editor.content.insertHtmIAtCursor(html)

/'l Insert a string of HTML at the cursor position
var newContent ="<p>Any HTM. Content</p>";
editor.content.insertHtm At Cursor (newContent);

Parameters

htm | String A string of HTML that will be inserted at the last known cursor position.

Returns

No return value.

98

editor.content.documentElement()

Access an instance's HTML document object by using edi t or . cont ent . docunent El enent () .

To obtain the body element, simply use the docurnent . body property.

Example

editor.content.documentElement()
/1 Retrieve an editor's docunent, then identify the body el enent

var edDocunent = editor.content.docunentEl ement();
var edBody = edDocunent. body;

Returns

HTM. Docurent = Object The HTML document element for the target editor. Null if the editor has not finished loading.

99

editor.content.uploadimages()

Add all Base64 images from an edi t or' s cont ent to the Textbox.io Services upload queue with edi t or . cont ent . upl oadl nages() .

If edi t or. content. upl oadl mages() is called before an existing image upload has completed, identified Base64 images will be appended to the
upload queue. Images that are not Base64 encoded will be ignored.

Upon completion of the queue, edi t or. cont ent. upl oadl mages() triggers a callback function. This callback function is passed a result set containing
a list of all images uploaded during since edi t or . cont ent . upl oadl mages() was called. Each item in the result set contains a DOM reference to the <
i mg>, and a status (success/failure) for that image upload.

® A success status means that the <i mg> should now contain a valid sr ¢ attribute to uploaded image.
® A false status implies that the image has failed to upload. After a failed upload, the image will still be Base64 encoded in the edi t or content. If e
di tor. content. upl oadl mages() is called again, the editor will pick up the failed image and try again.

Example

editor.content.uploadimages()

var callback = function (results) {
consol e. 1 og(' | mages have finished upl oading."');

resul ts. forEach(function (result) {
consol e. 1 og(' upl oad successful: + result.success);

console.log('the inage element ', result.elenent);

1)
1

/1 Add all Base64 inmages fromeditor content to the upload queue
edi tor. content. upl oadl mages(cal | back) ;

Parameters

cal | back | Function | Receives an array of objects with the upload status and DOM reference of each image that was uploaded.

Objects are in the form of:

var result = {
success: true,
el ement: reference

Returns

No return value.

100

editor.content.getSelectedText()

Example

editor.content.getSelectedText()

/1 Retrieve the current editor text selection
var sel ectedText = editor.content.getSel ectedText();

Returns

101

editor.content.isDirty()

Check if an instance's content has been updated or changed since it was set.
Content state is clean after any of these methods are invoked:

® textboxio.replace()

® textboxio.replaceAll()

® textboxio.inline()

® textboxio.inlineAll()

® editor.content.set()

® editor.content.setDirty(false)
Content state is considered dirty if:

® the content is modified
® editor.content.setDirty(true) is used

Returns

Boolean Returns True if the content has changed since it was last set.

102

editor.content.setDirty()

Explicitly set the content dirty state.

Parameters

Bool = Set the content dirty state with a boolean value

Returns

No return value.

Example:

setDirty example

/1l Set isDirty to false
editor.content.setDirty(false);

103

editor.content.selection

The aim of this APl is to provide detailed access to the editor selection while adding a layer of safety for developers. As a result it may be somewhat more
limited than is convenient for developers accustomed to raw DOM access.

This APl was introduced in Textbox.io release 2.2.1

Methods

Name Parameters Returns Details
get Text none String Returns the text content of the selection, removing all HTML tags. If the selection is collapsed an empty string (" ")
is returned.
get Ht m none String Similar to get Text but returns the complete HTML representation. Partially selected tags are automatically closed

at the edge of the selection range.

findTagAt Cu CSS3selector (St ' El enment or | See below for Element AP| details. Nul | is returned if the cursor is not within a tag matching the selector.
rsor ring) nul |

AP status
ThiIS"API is fully supported but has been released with bare minimum functionality to gauge developer interest and gather feedback.

Please contact us if there is an addition to the selection API you would like to see in a future release.

Examples

editor.content.selection.getText()

/1 Retrieve the current editor selection as text
var sel ectedText = editor.content.selection.getText();

editor.content.selection.getHtml()

/Il Retrieve the current editor selection as HTM.
var selectedHtnm = editor.content.selection.getHm();

editor.content.selection.findTagAtCursor()

/]l Retrieve a reference to a hyperlink surrounding the cursor
var selectedLink = editor.content.sel ection.findTagAtCursor("a[href]');

Element object

The Element API is a wrapper around DOM operations designed to smooth over differences between browsers and clean up internal editor attributes from
returned data.

Do not retain references

The Element object retains a reference to a DOM node within the editor, which is easily replaced by user action (for example undo and redo). Retaining a
reference to Element objects in your application will cause a memory leak.

Methods
Name Parameters Returns Details
getAttr none oj ect Returns a frozen object of key: val ue pairs matching the element attribute nane: val ue pairs (see below). Tag name is not
i butes included.
setAttr Object no return Given an object similar to the one returned by get At t ri but es, adds (or overwrites) attributes on the element. This method
i butes value cannot be used to remove attributes.
get Text none String Identical to sel ecti on. get Text () but returns content for this element only

104

https://support.ephox.com
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

get Ht m none String Identical to sel ecti on. get Ht m () but returns content for this element only

set Text String no return Updates the element text contents (using .textContent)
value
set Ht m String no return Updates the element HTML contents (using .innerHTML)
value
replace String new El em = Completely replaces the element in the document and handles cursor placement as it will be impacted by this change. This is
El enent ent object @ equivalent to setting .outerHTML on the DOM node, except the old element reference is not retained.

If parsing the string argument produces more than one HTML element, a JavaScript error is thrown.
Replaced Element references

1
Once an element has been replaced, any reference to the original element should be discarded. Continuing to use it will
either have no effect or fail with a DOM exception.

Examples

attribute objects

/1 for a HTM. el ement <a class="nylink" href="http://ephox.con' alt="alternative text for |ink" target="_bl ank"
> .. <la>
var attributes = {

href: 'http://ephox.com,

alt: 'alternative text for |ink',

target: '_blank',

‘class': 'nmylink'

replaceElement

var newEkl enent = el ement.replaceEl enent (' new text content');

Adjusting link attributes

/Il Retrieve a reference to a hyperlink surrounding the cursor - assumng not null for this exanple
var selectedLink = editor.content.selection.findTagAtCursor('a[href]");

/] Retrieve the attributes of the link
var |inkAttributes = sel ectedLink.getAttributes();

/Il Create new attributes. Miutating the linkAttributes variable will have no effect, it's a frozen object
var newAttributes = {

href: linkAttributes. href + '?replaced=true',

"data-link-details': 'replaced'

}s

/1 Update the link attributes
sel ect edLi nk. set Attri butes(newAttributes);

Updating a complete link

/Il Retrieve a reference to a hyperlink surrounding the cursor - assuming not null for this exanple
var sel ectedLink = editor.content.selection.findTagAtCursor('a[href]");

/Il Retrieve the HTML contents of the link
var linkH m = selectedLink.getHm();

/1 Replace the link conpletely w thout changing the contents
sel ect edLi nk = sel ect edLi nk. repl aceEl ement (' + linkHm + ');

105

https://developer.mozilla.org/En/DOM/Node.textContent
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/outerHTML

editor.element

Returns the editor container DOM element, this HTML element is unique to each editor instance and contains all Textbox.io Ul components.

Example

editor.restore()

/'l Replace the element with id 'replaceM'

var editor = textboxio.replace('#replaceMe');
/1 Get the editor container elenent

var elenment = editor.elenent();

Returns

el enent HTML element = The element that contains all the Textbox.io Ul components for the editor instance.

106

editor.events

editor.events is a grouping of properties related to the events of a Textbox.io Editor instance.

Editor events allow you to detect when the editor is shown and focused.

Properties

edi tor.

editor.

editor.

edi tor.

events. | oaded
events. focus
events.dirty

events. change

Triggered when an editor instance has finished loading.
Triggered when an editor receives focus.
Triggered when content has been modified or considered dirty.

Triggered when content changes.

107

editor.events.loaded

edi tor. events. | oaded is a grouping of methods related to the loaded event for a Textbox.io Editor instance.

The loaded event is triggered when an editor has finished loading.

Methods

edi tor.events. | oaded. addLi st ener () Binds a function to an editor instance's loaded event.

edi tor.events.| oaded. renovelLi stener () Removes a function from an editor instance's loaded event.

Example

edi tor. events. | oaded. addLi stener (function () {
/1 do sonething
consol e. 1 og(' The editor instance has | oaded')

1)

108

editor.events.loaded.addListener()

Add a custom event listener to a Textbox.io editor loaded event with edi t or . event s. | oaded. addl i stener ().

You can detect that an editor has finished loading by attaching a callback function to the editor’s loaded event.

Example

editor.events.loaded.addListener(callback)
/1 Add a customevent listener to the editor |oaded event

edi tor. events. | oaded. addLi st ener (function() {
alert (' Textbox.io has |oaded.");

1)

Parameters

cal | back @ Function = Function executed when the editor has loaded.

Returns

No return value.

109

editor.events.loaded.removeListener()

Remove a custom event listener on a Textbox.io editor loaded event with edi t or . event s. | oaded. r enovelLi st ener ().

You may remove any custom event listeners by passing the callback function used to specify the event with . addLi st ener () to.renoveli stener().

Example

editor.events.loaded.removeListener(callback)
var notify = function () {
al ert (' Textbox.io has |oaded.");

3

/1 Add a customevent listener to the editor |oaded event
edi tor.events. | oaded. addLi st ener (notify);

/'l Rermpve a custom event |istener
editor.events. | oaded. renpveli stener(notify);

Parameters

cal | back ' Function = Function used to specify the custom event listener that should be removed.

Returns

No return value.

110

editor.events.focus

edi tor. events. focus is a grouping of methods related to the focus event for a Textbox.io Editor instance.

The focus event is triggered when an editor receives focus.

Methods

edi tor.events. focus. addLi st ener () Binds a function to an editor instance's focus event.

edi tor.events. focus. renoveli stener () Removes a function from an editor instance's focus event.

Example

editor.events. focus. addLi st ener (function () {
/1 do sonething
console.log('this editor has focus', editor.elenent())

1)

111

http://Textbox.io

editor.events.focus.addListener()

Add a custom event listener to a Textbox.io editor focus event with edi t or . event s. focus. addl i stener ().

You can detect that an editor has received focus by attaching a callback function to the editor’s focus event.

Example

editor.events.loaded.addListener(callback)
/1 Add a customevent listener to the editor focus event

edi tor. events. focus. addLi st ener (function() {
alert('Editor got focus.');

1)
3

Parameters

cal | back Function = Function executed when the editor receives focus.

Returns

No return value.

112

http://Textbox.io

editor.events.focus.removeListener()

Remove a custom event listener on a Textbox.io editor focus event with edi t or . event s. f ocus. removeli st ener ().

You may remove any custom event listeners by passing the callback function used to specify the event with . addLi st ener () to.renoveli stener().

Example

editor.events.loaded.addListener(callback)
var notify = function () {
al ert (' Textbox.io got focus."');

3

/1 Add a customevent listener to the editor focus event
editor.events. focus. addLi st ener (notify);

/'l Renmpbve a custom event |istener
editor.events. focus. renoveli stener(notify);

Parameters

cal | back ' Function = Function used to specify the custom event listener that should be removed.

Returns

No return value.

113

http://textbox.io/

editor.events.dirty

The dirty event is triggered when an editors content is modified or has been explicitly set by editor.content.setDirty(true).

Methods

editor.events.dirty.addLi stener() Binds a function to an editor instance's dirty event.

editor.events.dirty.renmoveli stener() Removes a function from an editor instance's dirty event.

Example

editor.events.dirty. addLi stener(function () {
/1 do sonething
console.log('editor content is nowdirty', editor.elenent())

1)

114

editor.events.dirty.addListener()

Add a custom event listener to a Textbox.io editor dirty event with edi t or . events. dirty. addl i stener ().

You can detect that content has changed on an editor instance by attaching a callback function to the dirty event.

The_ dirty event only occurs when an instance's content has been updated or changed since it was set. See edi t or. content. i sDirty() for more
ddgi]ion the editor ‘clean’ and 'dirty’ states.

Example

editor.events.loaded.addListener(callback)

/1 Add a custom event |listener to the content dirty event
editor.events.dirty. addLi stener(function() {
alert('The editor content is nowdirty."');

1)
1

Parameters

cal I back | Function = Function executed when the editor's content state is considered dirty.

Returns

No return value.

115

http://textbox.io/

editor.events.dirty.removeListener()

Remove a custom event listener on a Textbox.io editor's content dirty event with edi t or. events. dirty. renoveli stener ().

You may remove any custom event listeners by passing the callback function used to specify the event with . addLi st ener () to.renoveli stener().

Example

editor.events.loaded.addListener(callback)
var notify = function () {
alert('The editor content is nowdirty."');

3

/1 Add a customevent listener to the editor's content dirty event
editor.events.dirty. addLi stener(notify);

/'l Renmpbve a custom event |istener
editor.events.dirty.renoveli stener(notify);

Parameters

cal | back ' Function = Function used to specify the custom event listener that should be removed.

Returns

No return value.

116

http://textbox.io/

editor.events.change

The change event is triggered when the editor content changes as defined by when an undo save point is created. These points are throttled to happen a
few seconds after the user has stopped typing, or when the enter key is pressed.

This APl was introduced in Textbox.io release 2.3.0

Methods

editor. events. change. addLi st ener () Binds a function to an editor instance's change event.

edi tor. events. change. renoveli st ener () @ Removes a function from an editor instance's change event.

Example

edi tor. events. change. addLi stener (function () {
/1 do sonething
consol e. 1 og(' The editor content has changed')

1)

117

editor.events.change.addListener()

Add a custom event listener to a Textbox.io editor change event with edi t or . event s. change. addl i stener ().
This APl was introduced in Textbox.io release 2.3.0

You can detect when editor content changes by attaching a callback function to the editor’'s change event.

Example

editor.events.change.addListener(callback)
/1 Add a custom event |listener to the editor change event

edi tor. events. change. addLi st ener (function() {
alert('Editor content has changed.');

1)

Parameters

cal | back ' Function = Function executed when the editor content changes.

Returns

No return value.

118

editor.events.change.removeListener()

Remove a custom event listener on a Textbox.io editor change event with edi t or. event s. change. r enbveli st ener ().
This APl was introduced in Textbox.io release 2.3.0

You may remove any custom event listeners by passing the callback function used to specify the event with . addLi st ener () to . renoveli stener().

Example

editor.events.change.removeListener(callback)

var notify = function () {
alert (' Textbox.io editor content has changed.');

1

/1 Add a custom event listener to the editor change event
edi tor. events. change. addLi st ener (notify);

/'l Rempbve a custom event |istener
edi tor. events. change. renovelLi st ener (notify);

Parameters

cal I back | Function = Function used to specify the custom event listener that should be removed.

Returns

No return value.

119

editor.filters

editor.filters isagrouping of properties related to content filtering for a Textbox.io editor instance.

You may add filters to manipulate the HTML content on the way into (or on the way out of) the editor. Filtering occurs when triggering editor.content method
S.

All Textbox.io filters work by passing DOM elements to a callback function. This function can then operate on the elements as necessary - removing them,
transforming them, or even storing that content elsewhere within your application.

Properties

sel ect or Groups methods relating to an selector based filters.

predi cat e = Groups methods relating to predicate based filters.

120

selector

sel ect or is a grouping of methods related to selector based content filtering for a Textbox.io editor instance.

Selector based filters let you identify the elements to be filtered by specifying a CSS3 selector. Elements matching the selector are added to an array
which is then passed to a callback function. The callback function then operates on the element array.

Methods

editor.filters.selector.

addl nput ()

editor.filters.selector.

addCut put ()

See Also

Filtering Content

Creates a filter when content is added to the editor with: t ext boxi o. repl ace(), editor.content. set (), edi
tor.content.insertH m At Cursor().

Creates a filter when content is requested from the editor with: edi t or . content . get ().

121

http://www.w3.org/TR/css3-selectors/

editor.filters.selector.addInput()

Create a selector based input filter for an editor instance with edi tor . fil ters. sel ect or. addl nput ().

The selector based input filter modifies content added to an editor with: t ext boxi o. repl ace(), editor.content.set(),editor.content.
insertHtm At Cursor().

Example

editor filters.selector.addInput(selector, callback)

/] Create an input filter for elements with class 'blue' that strips classes fromidentified elenents
editor.filters.selector.addl nput('.blue', function(elenents) {
el enents. forEach(function(el enent) {
el ement . cl assName = "";

1)
IO N
Parameters
sel ector | String Specify a CSS3 selector representing the elements you wish to pass to the filter.

cal | back | Function | Specify a function to process the array of matched elements.

Returns

No return value.

See Also

Filtering Content

122

http://docs.ephox.com/pages/viewpage.action?pageId=16318667
http://docs.ephox.com/pages/viewpage.action?pageId=16318712
http://docs.ephox.com/pages/viewpage.action?pageId=16318716
http://docs.ephox.com/pages/viewpage.action?pageId=16318716
http://www.w3.org/TR/css3-selectors/

editor.filters.selector.addOutput()

Create a selector based output filter for an editor instance with edi tor. fil ters. sel ect or. addQut put ().

The selector based output filter modifies content requested from an editor with: edi t or . cont ent . get ().

Example

editor filters.selector.addOutput(selector, callback)

I/l Create an output filter for elenents with class 'green' that strips classes fromidentified elenents
editor.filters.selector.addQutput('.green', function(el enents) {
el enents. forEach(function(el enent) {

el enent. cl assNane = ;

s
IO
Parameters
sel ector | String Specify a CSS3 selector representing the elements you wish to pass to the filter.

cal | back ' Function = Specify a function to process the array of matched elements.

Returns

No return value.

See Also

Filtering Content

123

http://docs.ephox.com/pages/viewpage.action?pageId=16318699
http://www.w3.org/TR/css3-selectors/

predicate

pr edi cat e is a grouping of methods related to predicate based content filtering for a Textbox.io editor instance.

Predicate based filters let you specify a matching function into which all elements passing into (or out of) the editor are passed. This matching function
evaluates each element and returns elements that you identify for filtering.

Elements identified and returned by the matching function are passed as an array to a callback function, which operates on the array of identified
elements. These operations can include, but are not limited to, filtering, element transformation, etc.

Methods

editor.filters. predicate.

addl nput ()

editor.filters. predicate.

addCut put ()

See Also

Filtering Content

Creates a filter when content is added to the editor with: t ext boxi o. repl ace(), editor.content.set(),ed
itor.content.insertHtnl At Cursor().

Creates a filter when content is requested from the editor with: edi t or . cont ent . get () .

124

editor.filters.predicate.addInput()

Create a predicate based input filter for an editor instance with edi tor . fil ters. predi cate. addl nput ().

The predicate based input filter modifies content added to the editor with: t ext boxi o. repl ace(), editor.content.set(),editor.content.
insertHtm At Cursor().

Example

editor filters.predicate.addInput(matchingFn, callback)

/1 A matching function identifying elenents that are HTM. comments and then returning those el ements
var comments = function(el ement) {
return el enent. nodeType == 8 || el enent.nodeNane == '#coment"';

3

/]l Create an in filter identifying coments, supplying the natching function highlights the comment text in a
red span and then renoves the original comment
editor.filters. predicate. addl nput (comrents, function(el enents) {
$(el ements). each(function(index, elenent){
var textContent = $(element)[0].textContent;
$(el ement). af ter ('
$(el ement).renove();

+ text Content + '');

1)
1)

Parameters

mat chi ngFn | Function = Specify a named function that returns the elements you wish to pass to the callback function.

cal | back Function = A function to process the array of matched elements.

Returns

No return value.

See Also

Filtering Content

125

http://docs.ephox.com/pages/viewpage.action?pageId=16318667
http://docs.ephox.com/pages/viewpage.action?pageId=16318712
http://docs.ephox.com/pages/viewpage.action?pageId=16318716
http://docs.ephox.com/pages/viewpage.action?pageId=16318716

editor.filters.predicate.addOutput()

Create a predicate based output filter for an editor instance with edi tor. fi |l ters. predi cat e. addQut put () .

The predicate based output filter modifies content when requested from the editor with: edi t or . cont ent . get ().

Example

editor filters.predicate.addOutput(matchingFn, callback)

/1 A matching function identifying elenents that are not allowed in the output
var disallowed = function(el ement) {
var name = el enent. nodeNane. t oLower Case()

return name === 'iframe' || nane === 'enbed';
b
I/l Create an out filter identifying tags that are not allowed and renoving them
editor.filters. predicate. addl nput (di sal |l owed, function(elenments) {

$(el ements).renove();

1)

Parameters

mat chi ngFn = Function = Specify a named function that returns the elements you wish to pass to the callback function.

cal | back Function | A function to process the array of matched elements.

Returns

No return value.

See Also

Filtering Content

126

editor.focus

Focus an editor instance with edi t or . f ocus() .

Example

editor.focus()

/1 Focus an editor
editor.focus();

Returns

No return value.

127

editor.macros

edi t or. macr os is a grouping of methods related to content macros for a Textbox.io editor instance.

Macros allow your application to be aware of content entered into Textbox.io. Macros listen for patterns in user entered text, and then take action when
constraints are met that result in a match. Potential matches are evaluated each time the user presses the space or return keys.

Methods
edi tor. macros. addSi npl eMacro() = Adds a simple content macro to an editor instance.
edi tor. macros. renoveMacro() Removes a macro from an editor instance.

See Also

Macros: Writing Content-Aware Code

128

editor.macros.addSimpleMacro()

Create a simple content macro for an editor instance with edi t or . nacr os. addSi npl eMacro() .

The simple replacement macro allows you to replace entered text when that text is surrounded by a startString and endString. The callback function can
then operate on the matched string, including the startString and endString.

Example

editor.macros.addSimpleMacro(startString, endString, callback)

/Il Create a macro that replaces text surrounded in doubl e-brackets with a string

var key = editor. macros.addSi npl eMacro('[[', '"]]', function(str) {
var newal ue = "Macro Triggered!";
return newval ue;
B
Parameters
startString = String A string pattern to search for signifying the beginning of the macro replacement.
endString = String A string pattern to search for signifying the end of the macro replacement.

callback Function = A function that receives the complete matching string (including start and end) and returns the string to insert instead.

Returns

key | String = A key that identifies this macro in this editor instance.

See Also

Macros: Writing Content-Aware Code

129

editor.macros.removeMacro()

Remove a previously added macro by passing its key to edi t or . macr os. r enoveMacr o() .
Example

/'l Rempbve a previously added macro by key
edi tor. macros. renpveMacr o(' macro_1234567");

Parameters

key | String = Key string returned when a macro is created via edi t or . macr os. addSi npl eMacro() .

No error is thrown if the key does not match a previously added macro.

Returns

No return value.

130

editor.message

Display a message banner in the editor Ul with edi t or . message() .

A message banner may be of one of three types: info (blue), warning (orange), or error (red). If you so choose, you may display more than one message
at a time.

N

Info message text.

Waming message text.

Error message text.

Example

editor.message(type, timeout, message)

/'l Replace the element with id 'replaceMe’
var editor = textboxio.replace('#replaceMe');

/1 Display an informational nessage in the editor U for 5 seconds
editor.nessage('info', 5000, 'This editor is ready to use.');

Parameters

type String = Specify the message type: info, warning, or error.
ti meout | Integer Specify time in msec before the editor message is automatically dismissed.
Note: Specifying O will cause the message to be displayed indefinitely.

message String | The text to be displayed in the message.

Returns

The message function returns an object with a hide function. This can be used to create a message that is hidden by some other action, instead of by a
timeout.

Example

editor.message(type, timeout, message)

/1 Replace the element with id 'replaceMe’
var editor = textboxio.replace('#replaceMe');

/1 Display a warning nmessage that doesn't hide autonatically
var nmsg = editor.message('warning', 0, 'Connection lost');

I ater

/1 Hi de the nessage
msg. hi de() ;

131

editor.mode

The editor's mode object provides functions to switch the editor into code and design views respectively

Methods

edi t or. node. get () Retrieves the HTML contents of an instance's content <body> element.

edi tor. node. set (String node) | Sets the editor mode type to either code or desi gn view

132

editor.mode.get()

Gets the current editor mode

Example

editor.content.set(html)

/1 Get the editor node
var node = editor. node. get ()

Parameters

none.

Returns

String - code if the editor is in code mode, desi gn if the editor is design mode.

133

editor.mode.set(mode)

Programmatically sets the editor's mode to either code or desi gn mode.

Example

/1 put the editor instance explicitly into code node
edi tor. node. set (' code');

/lput the editor instance explicitly into design node
edi tor. nobde. set (' design');

Parameters

node | String | Either code or desi gn for code or design views respectively. If any other values are used, an error is thrown.

Returns

No return value.

134

editor.restore

Remove an existing Textbox.io editor from the page, restoring the original element container. Content modified using Textbox.io is preserved within the
restored container.

Example

editor.restore()

/1 Replace the element with id 'replaceMe’

var editor = textboxio.replace('#replaceMe');
/'l Renmove the Textbox.io editor

var elenment = editor.restore();

Returns
el enent HTML The element that was previously replaced by Textbox.io. Returned element contents are updated with changes made during
element an editing session.

135

textboxio

The Textbox.io Editor API starts with the t ext boxi o JavaScript global. The t ext boxi o global is available after the editor JavaScript file is loaded on a
page.

The t ext boxi o global lets you create, modify, and interact with instances of the Textbox.io Rich Text Editor.

Methods
repl ace Replaces a DOM element with a Textbox.io Editor instance.
repl aceAl | Replaces DOM elements with Textbox.io Editor instances.
inline Creates an inline editable instance from a DOM element
inlineAl Creates a list of inline editable instances from a Jquery-style selector string or list of DOM elements
get Retrieves editor instances.

get Acti veEdi t or = Retrieves the active (last focused) editor instance.

i sSupported Identifies whether Textbox.io supports the current browser.
version Identifies the version of the Textbox.io Editor client.
Options

confi g Configuration item for Textbox.io Editor instances created with r epl ace orrepl aceAl | .

136

http://Textbox.io

get

Retrieve editor instances using get () . Note that you must pass a CSS3 selector identifying original elements that have been replaced by Textbox.io, in
the same manner as r epl ace and r epl aceAl | (). The elements returned by the selector are compared against the active editors, and where an
element has been replaced by an editor that editor is returned.

Example

textboxio.get(selector)

/1 Retrieve all editors whose original elenments have the css class 'al pha'
var editors = textboxio.get('.alpha');

/1 ldentify the first editor in the returned array.
var editor = editors[0];

Parameters

sel ector String Specify a CSS3 selector representing the element or elements that contain Textbox.io editors.

Returns

t ext boxi o. edi tor | Array An array of Textbox.io editor instances

137

http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/

getActiveEditor

Retrieve the last active editor (the editor that was last given focus) using get Act i veEdi tor ().

Example

textboxio.getActiveEditor()

/'l Retrieve the last editor used
var activeEditor = textboxio.getActiveEditor();

Returns

t ext boxi o. edi tor = Object The last active editor instance.

If no editor is active: returns the editor last given focus.

If no editors have been focused: returns the first editor created.

If no editor has been created: returns null.

If the active editor is removed: returns null until another editor is given focus.

138

Creates an inline editor instance from the provided DOM element or jQuery selector string. The initial content of the editor is set to the content/value of the
element it makes editable.

Example
Parameters
el ement String Specify a CSS3 selector representing the element you wish Textbox.io to replace for editing. Note that t ext ar ea is
not supported in this mode.
or
or
Element
The element you wish Textbox.io to make inline-editable.
confi gurat Object An optional group of key-value pairs that specify options/settings for the Textbox.io instances you are invoking.
ion (optional)

Note about selectors
1
If the selector matches multiple elements, only the first is replaced as per the rules for querySelector.

If it does not match any elements, a JavaScript error will be thrown. If the number of elements that will match is not known, use r epl aceAl | which does
not have this restriction.
Returns

t ext boxi 0. edi t or = Object = A single instance of the Textbox.io editor.

See also:

® Editor types - Classic vs Inline

139

http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/selectors-api/#queryselector
http://Textbox.io

inlineAll

Creates editable instances from a list or CSS3 query string of elements. The initial content of the editor is set to the content/value of the replaced element.

Example

<div class="editor first">First Content</textarea>
<div class="editor first">Second Content</textarea>

I/l Create a Textbox.io editor by searching for itens with the "editor" class
var editors = textboxio.inlineAll('.editor'); // returns an array of 2 editor instances

Parameters
el enents String Specify a CSS3 selector representing the elements to be made editable. Note that t ext ar ea is not supported in
this mode.
or
or
Array
Specify an array of DOM elements you wish Textbox.io to make editable.
configuration Object An optional group of key-value pairs that specify options/settings for the Textbox.io instances you are invoking.
(optional)
Returns

edi tor Arr | An array of Textbox.io editor instances. Each element matched with t ext boxi o. r epl aceAl | () creates a new instance of Textbox.io,
[1 ay which is then added to the returned array in order.

See also

® inline()
® Editor types - Classic vs Inline

140

http://www.w3.org/TR/css3-selectors/
http://Textbox.io
http://Textbox.io
http://Textbox.io

iIsSupported

This function was introduced in Textbox.io release 1.3.1.
Identify whether Textbox.io supports the current browser.

If this API returns false, all other APIs except version will throw an exception.
Example

textboxio.getActiveEditor()

/1 ldentify whether Textbox.io is supported on this browser
var supported = textboxio.isSupported();

Returns

t ext boxi 0. i sSupported Boolean Whether or not the browser is supported

141

replace

Create editor instances by replacing <t ext ar ea> or <di v> elements with t ext boxi o. repl ace() . The initial content of the editor is set to the content
Ivalue of the replaced element.

When Textbox.io replaces a <t ext ar ea> element within a <f or n®, it will update the original <t ext ar ea> element when the form is submitted, supplying
updated content as part of the <f or n»> POST.

When Textbox.io replaces <di v> elements, content must be requested from Textbox.io using a JavaScript API, see: Setting and Getting Content.
Example

textboxio.replace(selector, [configuration])

<di v id="repl aceMe" >Cont ent </ di v>

/] Create a Textbox.io editor by searching for a DOM el ement with id 'replaceMe’
var sinpleEditor = textboxio.replace('#replaceMe');

textboxio.replace(element, [configuration])

<div id="repl aceMe" >Cont ent </ di v>

/| Create a Textbox.io editor by replacing a specific DOM el enent
var div = docunent. get El enent Byl d(' repl aceMe') ;
var sinpleEditor = textboxio.replace(div);

Parameters

sel ect or String Specify a CSS3 selector representing the <di v> or <t ext ar ea> element you wish Textbox.io to replace for
editing.

or or
or

el ement Element
The <di v> or <t ext ar ea> element you wish Textbox.io to replace for editing.

configuration Object An optional group of key-value pairs that specify options/settings for the Textbox.io instances you are invoking.

(optional)
Note about selectors

1
If the selector matches multiple elements, only the first is replaced as per the rules for querySelector.

If it does not match any elements, a JavaScript error will be thrown. If the number of elements that will match is not known, use r epl aceAl | which does
not have this restriction.

Returns

t ext boxi o. edi tor = Object = A single instance of the Textbox.io editor.

142

http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/selectors-api/#queryselector

replaceAll

Create editor instances by replacing <t ext ar ea> or <di v> elements with t ext boxi o. r epl aceAl | () . The initial content of the editor is set to the
content/value of the replaced element.

When Textbox.io replaces a <t ext ar ea> element within a <f or n®, it will update the original <t ext ar ea> element when the form is submitted, supplying
updated content as part of the <f or n»> POST.

When Textbox.io replaces <di v> elements, content must be requested from Textbox.io using a JavaScript API, see: Get Editor Content.

Example

textboxio.replaceAll(selector, [options])

<textarea id="editor1">First Content</textarea>
<textarea i d="editor2">Second Content</textarea>

/| Create a Textbox.io editor by searching for textareas
var editors = textboxio.replaceAl('textarea');

textboxio.replaceAll(elements, [options])

<div id="editorl1">First Content</div>
<textarea id="editor2">Second Content</textarea>

/]l Create a Textbox.io editor by replacing the specific DOM el enents
var div = docunent.getEl enentByld('editorl');

var textarea = docunent.getEl enmentByld('editor2');

var editors = textboxio.replaceAl([div, textarea]);

Parameters
sel ector String Specify a CSS3 selector representing the <di v> or <t ext ar ea> element or elements you wish Textbox.io to
replace for editing.
or or
or
el enents Array
Specify an array of the <di v> or <t ext ar ea> elements you wish Textbox.io to replace for editing.
configuration Object An optional group of key-value pairs that specify options/settings for the Textbox.io instances you are invoking.
(optional)
Returns

t ext boxi o. Arr | An array of Textbox.io editor instances. Each element matched with t ext boxi o. r epl aceAl | () creates a new instance of
editor ay | Textbox.io, which is then added to the returned array in order.

143

https://docs.ephox.com/pages/createpage.action?spaceKey=tbio&title=Get+Editor+Content&linkCreation=true&fromPageId=23594495
http://www.w3.org/TR/css3-selectors/

version

Identify the version of the Textbox.io Editor client using t ext boxi 0. ver si on().

Example

textboxio.getActiveEditor()

/1 ldentify the version of Textbox.io in use
var version = textboxio.version();

Returns

t ext boxi 0. versi on = Object | A Textbox.io version object containing keys for values of maj or, mi nor, and f ul | version number strings.

144

Server-Side Components

Textbox.io comes packaged with optional server-side components that enhance the functionality of the editor.
These server-side components enable:

Enhanced Spellchecking for improved error detection and suggestions as well as greater Ul integration.
Extended Image Editing by allowing editing of images from the web through a proxy.

Hyperlink Validation to ensure that links in the content will resolve.

Enhanced Media Embed for transforming a pasted link into a rich representation of the target location.

The Textbox.io server-side components are compatible with Java Application Servers.
See the installing the server-side components article for more detail and to get started.

Once you have installed the Textbox.io server-side components you'll need to use the Editor APIs to reference the URL locations of your installed services.

Component Editor API Description
Spell Checking spelling Spell checking service for JavaScript editors.
Extended Image Editing (Image Proxy) @ image.editing | Image proxy to allow editing images from the web.
Hyperlink Checking links.validation ' Hyperlink validity checking service.

Enhanced Media Embed links.embed Transform hyperlinks into rich representations of the target location.

145

Installation and Setup

Some features require the deployment of server-side components onto a Java Servlet 3.0 compatible application server. We currently support Jetty,
Apache Tomcat, and WebSphere Application Server.

The following server-side components are packaged with the Textbox.io SDK:

Component File Description
Spell Checking ephox-spelling.war Spell checking service for JavaScript editors.
Extended Image Editing (Image Proxy) = ephox-image-proxy.war | Image proxy to allow editing images from the web.
Hyperlink Checking ephox-hyperlinking.war | Hyperlink validity checking service.

Enhanced Media Embed ephox-hyperlinking.war | Transform hyperlinks into rich representations of the target location.
Allowed Origins Service Deprecated

Nof€: The "Allowed Origins" service (ephox-allowed-origins.war) has been deprecated. Trusted domains should now be specified directly in the
configuration file.

This guide will help you get these server-side components up and running.

1. Install a Java Application Server

If you've already got a Java application server like Jetty or Tomcat installed, skip to Step 2.

If you don't, pick either Tomcat or Jetty and install one of these with their default settings using the instructions on their website.

Memory Requirement
Plge ensure that you configure your Java Server (Tomcat/Jetty etc) with a minimum of 4GB.

Please refer to the Out of Memory Errors troubleshooting page if you require instructions on how to explicitly define how much RAM will be allocated to
your Java server.

2. Deploy Server-side Components

Deploy all the WAR files that came packaged with the Textbox.io SDK to your newly installed Java application server:
® ephox-spelling.war
® ephox-image-proxy.war
® ephox-hyperlinking.war
The easiest way to deploy these files is to copy them into the webapps directory of your Tomcat/Jetty installation and then restart the application server.
More information can be found in the documentation of your chosen application server:
Deploying applications with Tomcat 9.0
Deploying applications with Jetty

3. Create a configuration file

Choice of editor

Usé€™a plain text editor (such as gedit, vim, emacs or notepad) when creating or editing the appl i cat i on. conf file. Do not use word processors like
Microsoft Word or Evernote as these can insert extra characters which make the file unreadable to the server-side components.

The Textbox.io server-side components require a configuration file to function correctly. By convention, this file is named appl i cati on. conf.

The SDK comes packaged with an example configuration file (exanpl es/ sanpl e_appl i cati on. conf) that can be used as a reference guide. You can
use this example file (after modifying it with your settings). We recommend that you make a backup of the file before editing it.

This configuration file will require you to enter at least the following information:
® al | owed- ori gi ns - the domains allowed to communicate with the server-side editor features. This is required by all server-side components.
Some server-side components require additional configuration which can be found in their individual documentation:

® Enhanced Media Embed

146

http://tomcat.apache.org/
http://www.eclipse.org/jetty/
https://tomcat.apache.org/tomcat-9.0-doc/deployer-howto.html
http://www.eclipse.org/jetty/documentation/current/configuring-deployment.html

al | owed- ori gi ns (required)

Textbox.io editor instances make use of the server-side components by performing a cross-origin HTTP request. These requests are subject to a form of
HTTP access control called Cross-Origin Resource Sharing (CORS). CORS is built into web browsers and is not a feature of Textbox.io's server side
components. A detailed explanation of CORS can be found on the Mozilla Developer Network.

The al | owed- ori gi ns element configures a list of all values that can be expected by the server-side components in a HTTP Origin header from your
Textbox.io instances (see the Mozilla Developer Network for more information on the HTTP Origin header). In short, you'll need to supply a list of all the
URLSs that your Textbox.io instances will be served from without the path information.

This is best illustrated with some examples:

If users load Textbox.io from the following URLSs:

® http://server.example.com/editor.php
® http://server.example.com/subpage/editor.php

Add htt p://server. exanpl e. comto the allowed-origins list.

If users load Textbox.io from the following URLs:

® https://server.example.com/editor.php
® http://server.example.com/subpage/editor.php

Add htt p://server. exanpl e. comand htt ps://server. exanpl e. comto the al | owed- ori gi ns list.

If users load Textbox.io from the following URLSs:

® https://server.example.com/editor.php
® https://server.example.com/

Add htt ps://server. exanpl e. comto the al | owed- ori gi ns list.

If users load Textbox.io from the following URLs:

® http://oneserver.example.com/editor.php
® http://twoserver.example.com/subpage/editor.php

Add htt p: // oneserver. exanpl e. comand ht t p: // t woser ver . exanpl e. comto the al | owed- ori gi ns list.

Note

1
If some of your URLs include a port then add an entry with and without the port. The value of the Ori gi n header may be different across browsers. Add
both to be safe.

If users load Textbox.io from the following URLs:
® http://server.example.com:8080/editor.php

Add htt p://server. exanpl e. com 8080 and htt p: // server. exanpl e. comto the al | owed- ori gi ns list.

If users load Textbox.io from the following URLs:
® https://server.example.com:9000/editor.php

Add htt ps: //server. exanpl e. com 9000 and ht t ps: // server . exanpl e. comto the al | owed- ori gi ns list.

element al | owed- ori gi ns = Stores CORS setup information

attribute | origins An array of strings containing all possible values of the HTTP Origin header the server-side components can expect.

Example:

147

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin

allowed-origins example

ephox {
al | owed-origins {
origins = ["http://nyserver"”, "http://nyserver.exanple.coni', "http://nyserver:8080"
“http://myotherserver", "http://nyotherserver:9090", "https://nysecureserver"]
}
}

Wildcard support
The * wildcard character matches any value. Wildcards are supported in the following parts of entries in the al | owed- ori gi n list:

. The scheme (e.g. *: / / mydonwi n. com). Omitting the scheme entirely is equivalent (e.g. nydonai n. con).

. The port (e.g. htt p: // mydomai n. com *).

As a prefix of the domain (e.g. htt p: // *. mydomai n. com).

. Any combination of scheme, port, and domain prefix (e.g. *: // *. mydonai n. com *).

. As the only character (e.g. *). This will allow any Ori gi n to access the server-side components.

. As the only character after the scheme (e.g. ht t ps: // *). This will allow any Origin serving Textbox.io from a HTTPS page to access the server-
side components.

ouhwNPR

Wildcards

Options 5 and 6 allow a broad set of origins access to the server-side components and are not recommended for production deployments.

allowed-origins with wildcards example

ephox {
al | owed-origins {
origins = ["http://nyserver:*", "*://nyotherserver.exanple.cont, "*://*. mydonai n. exanpl e. com

Troubleshooting Origins
If you missed an Origin or specified an Origin incorrectly, Textbox.io features that rely on the server-side components will not work from that Origin. If you

observe that requests to the server-side components are failing or features are unavailable and you're not sure why, refer to the troubleshooting
information about Investigating Using the Browser's Network Tools.

I i nk- checki ng. enabl ed (optional)

This element enables or disables the hyperlinking feature. Valid values are t r ue and f al se. If not set, the service is enabled by default.

I i nk- checki ng. cache (optional)

This element configures the hyperlinking service's built-in cache. When a hyperlink is checked and confirmed valid, the result is cached to save
unnecessary network traffic in the future. Default settings are automatically configured, meaning these settings are optional.

The capaci t y attribute sets the capacity of the cache. The default setting is 500.

The ti meToLi vel nSeconds attribute sets the time-to-live of elements of the cache, measured in seconds. The default setting is 86400 seconds, which is
one day.

The ti neTol dl el nSeconds attribute sets the time-to-idle of elements of the cache, measured in seconds. The default setting is 3600 seconds, which is
one hour.

element I'i nk- Stores cache settings for the hyperlink checker.
checki ng.
cache

148

attribute | capacity An integer defining the maximum number of elements stored in the cache at any one time.

attribute | timeToLiveln | Aninteger defining the time-to-live of the cache, measured in seconds. This is the maximum total amount of time that
Seconds an element is allowed to remain in the cache.

attribute | timeToldleln | Aninteger defining the time-to-idle of the cache, measured in seconds. This is the maximum amount of time that an
Seconds element will remain in the cache if it is not being accessed.

Example

link-checking Example

ephox {
I'i nk- checking {
enabled = true
cache {
capacity = 500
ti meTolLi vel nSeconds = 86400
ti meTol dl el nSeconds = 3600
}
}
}

pr oxy (optional)

This element configures use of an HTTP proxy for outgoing HTTP/HTTPS requests made by the server-side components.

Default proxy settings are picked up from JVM system properties, usually provided on the command line, as defined in "Networking Properties for Java".
The system properties ht t p. proxyHost, http. proxyPort, http.nonProxyHosts, https. proxyHost, https. proxyPort are recognized
as wellas ht t p. proxyUser and ht t p. proxyPasswor d to support authenticating proxies.

This optional proxy element provides an alternative to providing proxy settings as JVM system properties, or to override system properties.

element pr oxy Stores HTTP outgoing proxy settings for the server-side components.

attribute http. A string defining the host name of the proxy for plain HTTP (not HTTPS) connections. (Mandatory)
pr oxyHost

attribute | http. An integer defining the port number of the proxy for plain HTTP (not HTTPS) connections. (Mandatory)
pr oxyPor t

attribute | http. A list of strings separated by vertical lines ("|") listing hosts and domains to be excluded from proxying, for both plain HTTP
nonProxy and HTTPS connections. The strings can contain asterisks ("*") as wildcards. (Optional, defaults to "localhost|127.*|[::1]" if
Host s not set.)

attribute | https. A string defining the host name of the proxy for HTTPS connections. (Optional)
pr oxyHost

attribute | https. An integer defining the port number of the proxy for HTTPS connections. (Optional)
proxyPort

attribute http. Username for authenticating to both the HTTP and HTTPS proxy. (Optional)
proxyUser

attribute | http. Password for authenticating to both the HTTP and HTTPS proxy. (Optional)
pr oxyPas
sword

Example

149

http://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html

proxy Example

ephox {
proxy {
http. proxyHost = soneproxy. exanpl e. com
htt p. proxyPort = 8080
htt ps. proxyHost = soneproxy. exanpl e. com
https. proxyPort = 8080
http. nonProxyHosts = | ocal host | *. exanpl e. com
}
}

ht t p (optional)

element http HTTP Configuration for linkchecking and media embedding.

attribute mex-redirects | The maximum number of redirects that will be followed to check a hyperlink or retrieve open graph details from that
resource. The default value is 10 redirects before giving up on the resource.

attribute | request - An integer defining the number of seconds to allow HTTP requests to take. Default: 10
timeout -
seconds

attribute trust-all- A boolean indicating whether to bypass SSL security and indiscriminately trusts all SSL certificates. Default: false
cert

Some server-side components make outbound HTTP and HTTPS connections. These include Link Checker, Enhanced Media Embed and Image Tools
Proxy. In an evaluation or pre-production environment, you might want to test these features against resources with untrusted SSL certificates such as in-
house servers with self-signed SSL certificates. In these circumstances, it is possible to bypass all SSL security.

This is not recommended for production environments.

trust-all-cert-example

ephox {
http {
trust-all-cert = true
}
}

There are some additional http settings that apply to the hyperlinking service when it is following HTTP redirects (for link checks and open graph style
embeds) as well as the image proxy service.

redirects example

ephox {
http {
max-redirects = 20
request-tineout-seconds = 10
}
}

i mage- pr oxy (optional)

The image proxy service has some optional configuration to set a maximum size for images proxied. Images beyond this size it will not be proxied. Please
note that the ht t p. r equest - t i meout - seconds above also applies to requests made by the image proxy service.

element i mage- proxy Configures image proxy behaviour.

attribute Size-limt An integer defining the maximum allowed image size in bytes. Default: 10000000

150

redirects example

ephox {
i mage- proxy {
size-limt = 10000000
}

4. Pass the configuration file to the Java application server
HTTP Proxy
1

If y6u are relying on an HTTP proxy for outgoing HTTP/HTTPS connections to the Internet, consider configuring use of the proxy by the application server
by setting JVM system properties at this point. These can be set in the same manner as confi g. fi | e using the instructions below (using the - D option to
the j ava command). Please refer to "Networking Properties for Java" for details. The system properties ht t p. pr oxyHost, http. proxyPort, http.
nonProxyHosts, https.proxyHost, https. proxyPort are recognized as well as htt p. proxyUser and htt p. pr oxyPasswor d to support
authenticating proxies.

Alternatively, use of a proxy for server-side components can be set directly in their configuration file as discussed above.

Tell the services about the configuration file by setting the confi g. fi | e JVM system property to the absolute path of the configuration file. The exact
method for doing this varies depending on your operating system, application server and whether the application server is being run as a system service.
The authoritative reference for configuring any application server is the vendor documentation, but we'll do our best to get you started below.

Windows

All Windows examples will assume the name of your configuration file is appl i cat i on. conf and it is located in the directory C:
\config\file\llocation\.You'll need to set the JVM system property - Dconfig.fil e=C:\config\file\location\application.conf.

Tomcat

From the command line

The following assumes you've downloaded the Tomcat 9.0 zip archive from the Tomcat website, unpacked it and you're working from the unpacked
Tomcat directory.

Create or edit the script . \ bi n\ set env. bat to contain the following line:

Example setenv.bat

set "CATALI NA OPTS= -Dconfig.file=C: \config\file\location\application.conf"

There should only be a single line in this file defining the CATALI NA_OPTS environment variable.

You may also need to add another line with the path to your Java Runtime Environment installation (replace with the actual path on your system) such as:

Example setenv.bat

set "JRE_HOVE=C:\ Program Fi | es\ Java\jrel. 8. 0_131"

After editing set env. bat , run the following command to start Tomcat:

Starting Tomcat

.\'bi n\'startup. bat

For further information see the documentation on running Tomcat 9.0.

As a Windows service

If you download the Windows installer, Tomcat 9.0 will always be installed as a Windows system service. See the notes on Windows setup for Tomcat 9.0
and the instructions for setting JVM system properties in the Tomcat 9.0 Windows Service HOW-TO.

151

http://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html
https://tomcat.apache.org/tomcat-9.0-doc/RUNNING.txt
https://tomcat.apache.org/tomcat-9.0-doc/setup.html#Windows
https://tomcat.apache.org/tomcat-9.0-doc/windows-service-howto.html

As a minimal example, if the installer installed Tomcat to C: \ Progr am Fi | es\ Apache Software Foundation\ Tontat 9.0\ (default option):

® Run C: \ Program Fil es\ Apache Software Foundation\Tontat 9.0\bi n\ Tontat 9wwhich opens the Apache Tomcat 9.0 Tomcat9
Properties dialog box

® Select the Java tab

® Add the following line to Java Opti ons:

Java Options

-Deconfig.file=C:\config\file\location\application.conf

For other versions of Tomcat on Windows, check the Tomcat documentation for that version.

Jetty

From the command line

If you're following the instructions for Starting Jetty for Jetty 9.4.5, the path to the configuration file can simply be supplied as a command option:

Starting Jetty

java -D'config.file=C:\config\file\location\application.conf" -jar C\jetty\install\directory\start.jar

For other versions of Jetty on Windows, check the Jetty documentation for that version.

As a Windows service
Follow the instructions in Startup via Windows Service for Jetty 9.4.5. Remember to append the following snippet to the line beginning with set
PR_JVMOPTI ONSinyourinstal |l -jetty service bat script:

Append "set PR_JVMOPTIONS" line in install-jetty-service.bat

;-Dconfig.file="C \config\file\location\application.conf"

Note

1
Checkthe install-jetty-service. bat hasthe correct paths to your Java installation. The service will fail to start with some rather unhelpful errors
if the paths are incorrect.

For other versions of Jetty on Windows, check the Jetty documentation for that version.

Linux

All Linux examples will assume the name of your configuration file is appl i cati on. conf and it is located in the directory / confi g/ fil e/l ocation/.
You'll need to set the JVM system property - Dconfi g. fil e=/config/filel/location/application.conf.

Note
1
If the path to your appl i cati on. conf file has spaces in it, you must ensure you prefix each white space with an escape character (\).

Example: -Dconfig.file=/config/filel/location/wth/white\ space/application.conf
Tomcat and/or Jetty can be obtained via the package manager for many Linux distributions. The commands for starting the service and the location of the

configuration files will vary across distributions. If you installed an application server via the package manager, follow your distribution's documentation for
configuring it.

Tomcat
The following assumes you've downloaded Tomcat 9.0 from the Tomcat website and unpacked the archive to / opt / t ontat .
For other versions of Tomcat on Linux, check the Tomcat documentation for that version.

If you've obtained Tomcat from your distribution's package manager, refer to your distribution's documentation for Tomcat.

152

http://www.eclipse.org/jetty/documentation/9.4.5.v20170502/startup.html
http://www.eclipse.org/jetty/documentation/9.4.5.v20170502/startup-windows-service.html

From the command line
Create or edit the script / opt / t ontat / bi n/ set env. sh to contain the following line:
Example setenv.sh

CATALI NA_OPTS=" -Dconfig.file=/config/filel/location/application.conf"

There should only be a single line in this file defining the CATALI NA_OPTS environment variable.

After editing set env. sh, run the following command to start Tomcat:

Starting Tomcat

/opt/tontat/ bin/startup. sh

For further information see the documentation on running Tomcat 9.0.

Jetty

The following assumes you've downloaded Jetty 9.4.5 from the Jetty website and unpacked the archive to/ opt/jetty.
For other versions of Jetty on Linux, check the Jetty documentation for that version.

If you've obtained Jetty from your distribution's package manager, refer to your distribution's documentation for Jetty.
From the command line

The path to the configuration file can simply be supplied as a command option:

Starting Jetty

java -Dconfig.file="/config/filel/location/application.conf" -jar /opt/jetty/start.jar

As a Linux service

Assuming you've followed the instructions to Startup a Unix Service using jetty.sh for Jetty 9.4.5, edit/ et ¢/ def aul t / j et t y and add the line:

Example /etc/default/jetty

JETTY_ARGS=" -Dconfig.file=/config/filellocation/application.conf"

There should only be a single line in this file defining the JETTY_ARGS variable.

5. Restart the Java application server

After you've completed the steps on this page to Deploy server-side components, Create a configuration file and Pass the configuration file to the Java
application server, the application server may need to be restarted to pick up all your changes. Turn it off and on again now, just to be safe.

6. Set up editor client instances to use the server-side functionality

Now that the server-side components deployed and running, you'll need to tell your Textbox.io instances where to find them:

® Set the spelling.url configuration property to the URL of the deployed server-side spelling component.
® Set the images.editing.proxy configuration property to the URL of the deployed server-side image proxy component. Note that this URL must

include the full path as shown below, including the / I Mage path.
® Set the links.validation.url and links.embed.url configuration properties to the URL of the deployed server-side link-checking and enriched media
embed component.

This example assume your Java application server is running on port 80 (http) on your ser ver . exanpl e. comand that all the server-side components
are deployed to the same Java application server. Replace your ser ver . exanpl e. comwith the actual domain name or IP address of your server.

153

https://tomcat.apache.org/tomcat-9.0-doc/RUNNING.txt
http://www.eclipse.org/jetty/documentation/9.4.5.v20170502/startup-unix-service.html

Example

Textbox.io Client Config

var config = {

spelling : {
url: "http://yourserver.exanpl e.conm ephox-spelling/' // Spelling service base URL
b
imges : {
editing : {
proxy: 'http://yourserver. exanpl e. conl ephox-i nage- proxy/inmage' // |mage proxy service URL
}
b
links : {
validation : {
url : "http://yourserver. exanpl e. conl ephox-hyperlinking/' // Link-Checking service URL
}
}
links : {
enmbed : {
url : "http://yourserver. exanpl e. conl ephox-hyperlinking/' // Enriched Medi a Enbed service URL
}
}

}s

var editor = textboxio.replace('#id , config);

I'i nks. enbed. url

154

Logging

It may be useful to make the Textbox.io server-side components write to their own log file. This can assist in troubleshooting and make it easier to provide
logs as part of a support ticket.

To write the logs to a specific file, you'll need to perform the following steps:

Step 1. Create a logging configuration XML file
The Textbox.io services use the Logback logging format.

Save the snippet below as | ogback. xmi after replacing { $LOG_LOCATI ON} with the full path to the destination log file (e.g. / var /| og
/ t ext boxi o_server_conponents. | 0g).

<configuration>

<appender nane="STDOUT" cl ass="ch. qos. | ogback. core. Consol eAppender" >
<encoder >
<pat t er n>%d{ HH: mm ss. SSS} [% hread] % 5l evel % ogger{36} - %rsg%n</ pattern>
</ encoder >
</ appender >

<appender nane="FILE" cl ass="ch. qos. | ogback. core. Fi | eAppender" >
<file>{$LOG LOCATION} </ fil e>
<encoder >
<pat t er n>%d{ HH: mm ss. SSS} [% hread] % 5l evel % ogger{36} - %rsg%m</ pattern>
</ encoder >
</ appender >

<!-- The name "com ephox" refers to all the Textbox.io server-side conponents. -->
<l ogger nane="com ephox" |evel ="I NFO'/ >
<root |evel ="I NFO'>

<appender-ref ref="FILE" />

<!-- If you want |ogging to go to the container as well uncomrent

the following line -->
<!-- <appender-ref ref="STDOUT" /> -->
</root>

</ configurati on>

Step 2. Pass the configuration file to the Java application server

Assuming you've saved your logback.xml file in /etc/opt/textbox, follow step 4 and step 5 on the Installation and Setup page to set the following JVM
system property on your Java application server:

Logging configuration file JVM property

- Dl ogback. confi gurationFil e=/etc/opt/textbox/|ogback.xm

155

http://logback.qos.ch/manual/configuration.html

Embed Rich Media

The Enhanced Media Embed plugin makes it easy to add an enhanced content creation experience in your website or app with enriched media previews
from the most popular web sources. Facebook, YouTube, Flickr, NY Times, Vimeo, Hulu, Tumblr, CodePen, SlideShare, TechCrunch, WordPress, Twitch,
Spotify ... and many more!

By easy, we mean easy. The service automatically “looks behind the link” to see whether a URL in the Textbox.io editor points to a rich media source. That
URL will resolve into an enhanced media thumbnail whenever possible.

It is now as simple as adding a plugin to deliver a modern, content creation experience that everyone takes for granted.

Enhanced Media Embed Quick Setup

Once you've got the server-side component installed, additional configuration to your appl i cati on. conf file is required. (Don't forget to restart the Java
application server after updating the configuration.)

You also need to integrate and configure the Enhanced Media Embed server.
WebSphere Application Support
1

The Enhanced Media Embed server currently does not support integration with IBM WebSphere Application Server.

156

Configure Enhanced Media Embed Server

Once you've got the server-side component installed, additional configuration to your application.conf file is required. (Don't forget to restart the Java
application server after updating the configuration.)

The Enhanced Media Embed service allows you to choose between using your own Iframely account, configuring custom oEmbed endpoints or using a
combination of both.

When you insert media into your content, the service will do the following (in order):
1. Check if the URL matches any custom oEmbed configuration. If that fails,

2. If Iframely is configured, query the Iframely API. If Iframely is not configured,
3. Create a summary card.

embed.enabled (optional)
This element enables or disables the Enhanced Media Embed feature. Valid values are t r ue and f al se. If not set, the service is enabled by default.
ephox {

enbed {
enabled = true

}
}

Use your own Iframely account

To use your own Iframely account, provide the following configuration items:
® enabl ed - setto t r ue to use Iframely. If set to f al se, you don't need to provide the base- ur | or api-key configuration items.
® base-url -the base URL of the Iframely API. Check their docs if you're unsure.

® api - key - your Iframely API key. This is provided by Iframely after setting up an account with them.

Example with Iframely enabled (replace xxx with your Iframely API key):

ephox {
enmbed {
iframely {
enabl ed = true
base-url = "https://iframe.ly/api/iframely"
api -key = "xxx" // change this to your own Iframely APl key
}
}
}

Example with Iframely disabled:

ephox {
enbed {
iframely {
enabl ed = fal se
}
}
}

Configure a custom endpoint
The service can be configured to hit a specific oEmbed endpoint when media from a URL matching a provided pattern is inserted into your content.
® endpoi nt - the URL of the oEmbed endpoint that should be consulted when inserting media with a URL that matches an entry in schenes.
® schenes - alist of schemes as defined in Section 2.1. Configuration of the oEmbed specification. Note that HTTP and HTTPS are two separate

schemes.

Example note: This configuration is provided as an example only. The Enhanced Media Embed service converts an oEmbed response into an
embeddable snippet of code. The content and quality of the snippet is dependent on the oEmbed response.

Example:

157

https://iframely.com/
http://oembed.com/
https://iframely.com/docs/iframely-api
http://oembed.com/#section2.1

ephox {
enbed {
custom = [
yout ube
{
endpoint = "http://ww. yout ube. com oenbed"
schenes = [
"http://youtu. be/*",
"https://youtu. be/*",
"http://ww.youtu. be/*",
"https://ww.youtu. be/*",
"http://youtube.conl *",
"https://youtube.com *",
"http://ww.youtube. conl*",
"https://ww. yout ube. com *",
"http://myoutube.com *",
"https:// myoutube. con *"
]

H
NY Tines
{
endpoint = "https://ww. nytimes. cont svc/ oenbed/json/"

schenes = [
"http://ww. nytinmes.conl*",
"https://ww. nytines.com *"

]

I
Daily Mtion
{
endpoint = "http://ww. dai | ynotion. conf servi ces/ oenbed"

schenes = [
"http://ww. dai |l ynotion. conf vi deo/ *"
"https://ww.dail ynotion. com vi deo/ *"
"http://ww. dai | ynotion. conmf enbed/ vi deo/ *"
"https://ww. dail ynotion. conf enbed/ vi deo/ *"

]

-

Soundcl oud

endpoi nt = "http://soundcl oud. conif oenbed"”
schenes = [
"http://soundcl oud. conl *",
"https://soundcl oud. coni *",
"http://api.soundcl oud. conmtracks/*",
"https://api.soundcl oud. conf tracks/*"

]

H
Facebook post
{
endpoint = "https://ww. facebook. cont pl ugi ns/ post/ oenbed. j son/"

schenes = [
"http://*.facebook. conf per mal i nk. php*",
"https://*.facebook. conl permal i nk. php*",
"http://*.facebook. conf phot o. php*",
"https://*.facebook. com photo. php*",
"http://*.facebook. conl */ photos/*",
"https://*.facebook. conf */ photos/*",
"http://*.facebook. conl*/posts/*",
"https://*.facebook. conl */posts/*",
"http://*.facebook.com */activity/*",
"https://*.facebook.conl*/activity/*",
"http://*.facebook. coninotes/*",
"https://*.facebook. conf nedi a/ set/*"

]

I
Facebook Vi deo
{
endpoint = "https://ww. facebook. contf pl ugi ns/ vi deo/ oenbed. j son/"

schenes = [
"http://ww.facebook. conivi deo*",

158

"https://ww. facebook. conl vi deo*",
"http://ww.facebook. conl */vi deos/ *",
"https://ww.facebook. conf */vi deos/*",
"http://business. facebook. con vi deo*",
"https://business. facebook. conf vi deo*",
"http://business. facebook. conf */vi deos/*",
"https://business. facebook. cont */ vi deos/ *"

]

H
Facebook Page
{
endpoint = "https://ww. facebook. cont pl ugi ns/ page/ oenbed. j son/"

schenes = [
"http://ww:.facebook. cont *",
"https://ww.facebook.conl *",
"http://mfacebook. conl*",
"https:// mfacebook. conl *"

]

-

Spotify

endpoint = "https://enbed. spotify.conf oenbed/"

schenes = [
"http://spotify.com *",
"https://spotify.com *",
"http://open.spotify.com *",
"https://open.spotify.com *",
"http://enbed. spotify.com *",
"https://enbed. spotify.conm *",
"http://play.spotify.com *",
"https://play.spotify.con *"

]

-

Hulu

endpoi nt = "http://ww. hul u. conf api / oenbed. j son",
schenes = [

"http://ww. hul u. com wat ch/ *",

"https://ww. hul u. conf wat ch/ *"

]

-

Vi meo

endpoint = "http://vineo.conl api/oenbed. j son",
schenes = [
“http://vimeo.com *",
"https://vimeo.conm *",
"http://ww.vimeo.conl*",
"https://ww. vi neo. con *"

]

-

SmugMug

endpoint = "http://api.smgnug. conl servi ces/ oenbed/"
schenes = [

"http://*.smugnmug. conl *",

"https://*.smugnug. con *"
]

3
Slideshare
{
endpoint = "http://ww. slideshare. net/api/oenbed/ 2"

schenes = [
"http://*.slideshare.net/*"

]
Wordpress
endpoint = "https://public-api.wordpress. conf oenbed/ 1. 0/ ?f or =ephox"

schenes = [
"http://*. wordpress.conl*",

159

"https://*.wordpress.conl*"
]
o
Meet up
{
endpoint = "https://api.nmeetup.com oenbed"
schenes = [
"http://ww. nmeetup.conl*",
"https://ww. meetup. com *",
"http://neetup.com *",
"https://meetup.conl *",
"http://neetu.ps/*",
"https://nmeetu.ps/*"
]

-

Spotify

endpoint = "https://enbed. spotify. conm oenbed/"

schenes = [
"http://open.spotify.com *",
"https://open.spotify.com *",
"http://play.spotify.com *",
"https://play.spotify.con*"

]

-

Tech crunch

—~

endpoint = "http://public-api.wordpress.con oenbed/ 1. 0/ ?f or =ephox"
schenes = [

"http://techcrunch.conm *",

"https://techcrunch. conl *"
]

-

Dot sub

endpoi nt = "https://dotsub. conl services/ oenbed"
schenes = [
"http://dotsub.com view *",
"https://dotsub.conl view *"
]

-

Speaker deck

endpoi nt = "https://speakerdeck. cont oenbed. j son"
schenes = [
"http://speakerdeck. com */*",
"https://speakerdeck. conl */*"
]

-

Tunblr

—~

endpoint = "https://ww.tunblr.com oenbed/ 1. 0"
schenes = [
“http://*.tunblr.com post/*",
"https://*.tunblr.com post/*"
]

-

Adobe Stock

endpoi nt = "https://stock.adobe. con’ oenbed"
schenes = [
"http://stock. adobe. com *",
"https://stock.adobe. conl *"
]

I
Code pen
{
endpoi nt = "https://codepen.io/ api/oenbed"

schenes = [
"http://codepen.iol*/pen/*",
"https://codepen.iol*/pen/*"

160

]
b
500px
{

endpoint = "https://500px. com oenbed"”

schenes = [

"http://500px. com photo/*",
"https://500px. cont phot o/ *"

Combining Iframely and custom endpoints

It is also possible to configure Iframely with custom oEmbed endpoints. For example, you may want to use Iframely to embed media from the Internet and
an internal oEmbed server to embed media from an Intranet.

Example (replace xxx with your Iframely API key):

ephox {
enbed {
iframely {
enabled = true
base-url = "https://iframe.ly/api/iframely"
api -key = "xxx" // change this to your own Iframely APl key

b

custom = [

{
endpoint = "http://Iocal host: 3000/ oenbed"

schenes = [
"http://intranet.exanple.conf*"

Summary cards
If neither Iframely or an oEmbed endpoint is configured for a given URL, a summary card will be created.

A summary card is an embeddable snippet of code which is generated based on what the Enhanced Media Embed service can work out about the content
at the URL. See the integration docs for Enhanced Media Embed Server for further details.

161

Integrate Enhanced Media Embed Server

Websites like Facebook and Instagram expose an oEmbed endpoint for developers to utilise. The Iframely service creates embeds from websites on the
public Internet. For content on private networks, such as a corporate CMS, this document outlines how to enrich the content or build an API that the
Enhanced Media Embed server can utilise to create rich hyperlinks. We'll also provide some information about the Enhanced Media Embed server's
summary cards.

There are three options for enhancing the embeds created for private content by the Enhanced Media Embed server:

® Annotate content with Open Graph or other meta tags
® Develop your own custom endpoint that returns JSON in the oEmbed format
® Develop your own custom endpoint that returns JSON in the Tiny Enhanced Media Embed format

A note on cookies & authentication

If the content or endpoint is on the same domain as the Enhanced Media Embed server, cookies will be forwarded to that server. This should reuse the
existing login of the user in a CMS environment.

As an example:

The Enhanced Media Embed server is accessible at ht t p: / / mydonmai n. exanpl e. coni nedi a

Your custom oEmbed endpoint is accessible at ht t p: / / mydomai n. exanpl e. coni endpoi nt

You have already signed into your CMS at ht t p: / / nydomai n. exanpl e. conl cs

You embed content from ht t p: / / nydomai n. exanpl e. conf cns/ secr et cont ent that normally requires authentication to access

Because your content, oEmbed endpoint and Enhanced Media Embed server are all on the same domain, ht t p: / / nydonmai n. exanpl e. com
/ crrs/ secr et cont ent is embeddable using cookie passthrough

Annotate content with Open Graph or other meta tags

Opengraph

If your content is marked up with Open Graph tags and is accessible with a HTTP GET request from the Enhanced Media Embed server, then business
card style embeds will be created based on your content.

If Iframely is enabled in the configuration, then the Open Graph look up will be performed by Iframely. Iframely requires that the content be publicly
accessible on the Internet.

At a minimum, you'll need to define these Open Graph tags:

® og:title
® og:inmage

It's a good idea to also define:
® og:url
® og:description
® og:site_nanme

Additionally, you can specify a video or audio resource to include in the embed by defining:

® 0g:video &og: vi deo: t ype (only MP4 is supported across all browsers)
® 0g: audi o & og: audi o: t ype (only MP3 is supported across all browsers)

SEO tags
As an alternative to Open Graph tags, you can include meta tags using the older style recommended by search engines such as Google.

¢ <title> ..</title>
® <neta nanme="description”>. ..</neta>
® <link rel =image_src href="..." />

Pros

This is the easiest method for creating embeds without an existing embed API

No server configuration required

There are existing CMS plugins that will add these tags to content

The Enhanced Media Embed server will handle creating the embed HTML and styling

Cons

The page must be accessible to the Enhanced Media Embed server (it must not require authentication)

The embed HTML and styling created by the Enhanced Media Embed server is not configurable

Only works for HTML URLs

Iframely can only be enabled or disabled as a global option. If Iframely is enabled, then all content must be world accessible and cookie
passthrough will not happen.

162

https://developers.facebook.com/docs/plugins/oembed-endpoints
https://www.instagram.com/developer/embedding/
http://oembed.com/
https://iframely.com/
http://ogp.me/

Custom API

As an alternative to including meta tags in your content, you can write a custom API that returns JSON in either the oEmbed or Tiny Enhanced Media
Embed formats.

See the docs on configuring a custom endpoint for details on getting the Enhanced Media Embed server to utilise your custom API.

OEmbed endpoint

This is a popular choice and many CMSs have existing plugins that support oEmbed. While you can create custom HTML embeds this way, they cannot
contain scripts. If the HTML contains a script, then the Enhanced Media Embed server will embed a summary card.

Pros

® There are existing CMS plugins that support oEmbed
® You can write your own custom HTML

Cons

® No room in this spec for multiple embed representations of the same URL
® Must be a separate API rather than just metadata embedded in the content
® Error messages aren’t defined as part of the spec

Tiny Enhanced Media Embed endpoint

The other option for developing a custom API endpoint is to return JSON in the Tiny Enhanced Media Embed format.

Pros

® You can write your own custom HTML
® The format has the ability to house multiple embed representations of the same URL
® Better defined ability to communicate errors to the media server

® Must be a separate API rather than just metadata embedded in the content
® No support from existing plugins
® The Textbox.io editor does not fully take advantage of this format yet

Tiny Enhanced Media Embed format

HTTP response status codes

HTTP 200 (OK): EphoxEnbedObj

HTTP 400 (User Error): Er r or Obj

HTTP 503 (Upstream Error): Er r or Obj
HTTP 500 (Unexpected Error): Er r or Cbj

JSON response objects
EphoxEnmbedCbj

rel, medi a and ht M combine to form the default representation of the embeddable resource that your server has chosen. Clients of the Enhanced
Media Embed server (such as the Textbox.io editor) can look for alternative representations in | i nks.

® title (optional)
® String containing the document title.
® aut hor _nane (optional)
® String containing the author's name.
® author_iri (optional)
® String containing an IRI for the author.
® provider_iri (optional)
® String containing an IRI for the resource provider.
® provider_nane (optional)
® String containing the name of the resource provider.
® short_iri (optional)
® String containing a shortened IRI for the resource.
® canonical _iri (required)
® String containing the IRI of the resource.
® descri pti on (optional)
® String containing a description of the document.
® cache_age (optional)
® Integer containing the suggested cache lifetime for this resource, in seconds.
® dat e (optional)

163

https://docs.ephox.com/display/tbio/Configure+Enhanced+Media+Embed+Server#ConfigureEnhancedMediaEmbedServer-configureacustomendpoint
https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier

® String containing the date of the document in the format YYYY-MM-DD.
® | i nks (required)

® LinksObj
® rel (optional)

® RelObj
* nedi a (optional)

®* MediaObj

® htnl (optional)
® String containing the HTML snippet to be embedded by Textbox.io.

Rel Onj

An array of tags describing the primary type of an embed, where it came from and whether there are any technical attributes that you may want to know
about (autoplay, ssl, file format (flash, html5, etc)).

® prinary (required)

® Array of PrimaryRels
® technical (required)

® Array of TechnicalRels
® sour ce (required)

® Array of SourceRel

Pri mar yRel

A string describing the primary type of an embed containing one of the following values:

® pl ayer : Avideo or audio player

® t hunbnail : Athumbnail representation of the resource

® i mage : A full sized image for the resource

® reader

® file:NoHTML provided. Should just be a hyperlink to a downloadable file.
® survey

® app : An embed that will switch over to a mobile app if played on a mobile (e.g. soundcloud)
® summary : Summary card (scriptless embed)

® icon

® | ogo

® prono

Techni cal Rel
A string describing technical attributes of an embed containing one of the following values:

flash
htm 5
gifv
inline
ssl

aut opl ay

Sour ceRel
A string describing the source of an embed containing one of the following values:

i franmely : From Iframely

opengr aph : Generated from Open Graph tags in a resource

twitter : Retrieved from a Twitter Card

oenbed : Retreived from an oEmbed API

smd

fal | back : Tiny fallback embeds that look at SEO tags and Open Graph tags.

scri pt _censor : The original embed (from Iframely or oEmbed) had a script in it and has been converted to a summary card.

smart f rame_censor : The original embed had an Iframely smart frame and has been censored into a summary card to avoid a content
dependency on Iframely.

Li nksnj
Represents all of the possible representations of this resource.

® pl ayers (required)

® Array of LinkObjs
® thunbnai |l s (required)

® Array of LinkObjs
® apps (required)

® Array of LinkObjs
® readers (required)

® Array of LinkObjs
® surveys (required)

® Array of LinkObjs

164

https://dev.twitter.com/cards/overview

® summary_car ds (required)

® Array of LinkObjs
® j cons (required)

® Array of LinkObjs
® | ogos (required)

® Array of LinkObjs
® pronos (required)

® Array of LinkObjs
® i nages (required)

® Array of LinkObjs
® files (required)

® Array of LinkObjs

Li nkObj
This represents a representation that you could link to / embed.

* nedi a (optional)
® MediaObj
® rel s (required)
® RelObj
® href (optional)
® String containing the URL of the resource.
®* m me_t ype (required)
® String containing the mime-type of the resource.
® htnl (required)
® String containing the embeddable HTML snippet.

Medi aObj
The media object describes the bounds of the embed. It can either be responsive or fixed.

® type (required)
® String with the value fi xed or r esponsi ve

Fields when t ype is f i xed:

® w dt h (required)
® Integer containing width in pixels.
® hei ght (required)
® Integer containing height in pixels.
® paddi ngBot t om(optional)
® Integer
Fields when t ype isr esponsi ve:
® aspect Rati o (optional)
® Double
® paddi ngBot t om(optional)
® Integer
® wi dt h (required)
® DimensionBoundObj
® hei ght (required)
® DimensionBoundObj

Di mensi onBoundQbj
The dimension bounds define the height or width of a responsive embed.

® type (required)
® String with the value of f i xed, const r ai ned or unbounded

Fields when t ype is f i xed:

® pi xel s (required)
® Integer

Fields when t ype is const r ai ned:
® m n_pi xel s (optional)
® Integer
* max_pi xel s (optional)
® Integer

No additional fields when t ype is unbounded.

Er r or bj

165

® code (required)
® Integer with the value of 400 (User Input Error) or 503 (Upstream Failure)
® subcode (required)
® Integer with one of the following values:
® When code is 503:
® 1 - Upstream connection issue
® 2 - Upstream returned not OK
® 3 - Upstream returned a response that didn’t make sense to the server
® When code is 501:
® 1 - Support for URI not implemented
® When code is 400:
® 1 - URI Failed to parse
® 2 -URIlwas relative
® 3 - URI was empty
® 4 - URIl was not http or https
® 5 - Max width was not a positive integer
® nsg (required)
® A string message for developers / support people.

Summary cards

When the Enhanced Media Embed server generates a summary card of a URL (using the title, thumbnail, description and website), it returns a HTML
snippet like the following. You should apply styles to the document style to suit these to your preference.

<di v cl ass="ephox-sunmary-card">
<a cl ass="ephox-summary-card-url-thunbnail" href="http://ww.indb.comtitle/tt0117500/">

<img cl ass="ephox-sumary-card-thunbnail" src="https://inages-na.ssl-i nages-amazon. conl i mages/ M
/ MW5BZDJj OTEON2Et MRl ZSOONz UOLVEOZWQX M2 QBMAVKN cwZj BhXk Ey Xk Fgc Gde QXVy NDk3Nz U2MIQ@ _V1_UY1200_CR90, 0, 630, 1200
AL.jpg">
</ a>

<a cl ass="ephox-summary-card-|ink" href="http://ww.indb.comtitle/tt0117500/">
The Rock (1996)

Directed by M chael
Bay. Wth Sean Connery, Nicolas Cage, Ed Harris, John Spencer. A
m | d-mannered cheni st and an ex-con nmust |ead the counterstrike when a
rogue group of mlitary nen, led by a renegade general, threaten a nerve
gas attack from Al catraz agai nst San
Franci sco. </ span>

l MDb</ span>

</ a>

</ di v>

Recommended CSS

166

. ephox-summary-card {
border: 1px solid #AAA
box- shadow. 0 2px 2px O rgba(0,0,0,.14), 0 3px 1lpx -2px rgba(0,0,0,.2), 0 1px 5px O rgbha(0,0,0,.12);
paddi ng: 10px;
overflow hidden;
mar gi n-bottom lem

}

. ephox-summary-card a {
t ext -decorati on: none;
color: inherit;

}

. ephox-sumary-card a:visited {
color: inherit;

}

. ephox-summary-card-title {
font-size: 1.2em
di spl ay: bl ock;

}

. ephox- summar y- car d- aut hor {
col or: #999;
di spl ay: bl ock;
mar gi n-top: 0.5em

}

. ephox- summar y- car d- websi te {
color: #999;
di spl ay: bl ock;
mar gi n-top: 0.5em

}

. ephox- summar y- car d- t hunbnai | {
max-wi dt h: 180px;
max- hei ght: 180px;
margin-left: 2em
float: right;

}

. ephox- summar y- car d- descri ption {
margi n-top: 0.5em
di spl ay: bl ock;

167

Adding Custom Dictionaries

Custom dictionaries can be added to Spell Checker Pro.

Configuring the Custom Dictionary Feature
Additional configuration to your appl i cat i on. conf file is required. (Don't forget to restart the Java application server after updating the configuration.
Adding the ephox. spel I i ng. cust om di cti onari es- pat h element activates the custom dictionary feature. It points to a directory on the server's file
system that will contain custom dictionary files and should not contain anything else. It is a good idea to store these files where the appl i cati on. conf
file lives, i.e. if appl i cati on. conf is in a directory called / opt / ephox, the dictionary files could live in a sub-directory / opt / ephox/ di cti onari es.
Example
ephox {
spelling {
customdi ctionaries-path = "/opt/ephox/dictionaries"”

}
}

Creating Custom Dictionary Files

One custom dictionary can be created for each language supported by the spell checker (see supported languages), as well as an additional "global"
dictionary that contains words that are valid across all languages, such as trademarks.

A dictionary file for a particular language must be named with the language code of the language (see supported languages for language codes), plus the
suffix . t xt : E.g. en. txt,en_gb. txt,fr.txt,de.txt etc.

The "global" dictionary file for language-independent words must be called "global.txt".

The server will scan the dictionary directory as per configuration above and pick up "txt"-files for each language and the global file as present.

Custom Dictionary File Format
A dictionary file must be a simple text file with:

one word on each line,

either Windows-style or Linux-style line endings (CR or CR+LF)
no comments or blank lines, and

saved in UTF-8 encoding, with or without BOM (byte-order mark).

The last point is important for files created or edited on non-Linux (Windows or Mac) systems, as these will usually encode text files differently. However,
Windows or Mac editors such as Windows Notepad can optionally save files in UTF-8 if asked to do so. Please check your editor of choice for this
functionality. Failure to chose the correct encoding will result in problems with non-English letters such as umlauts and accents.

NOTE for German and Finnish languages: Spell checking in German and Finnish will employ compound word spell checking. Compound words such as
"FuBballtennis" will be assumed correct as long as the root words "FuR3ball" and "Tennis" are individually present in the dictionary. It is not necessary to
add "FuRballtennis" separately.

Verifying Custom Dictionary Functionality
If successfully configured, the custom dictionary feature will report dictionaries found in the application server's log at service startup.

Example

2017-06-12 17:46:00 [main] | NFO com ephox.ironbark.|ronbarkBoot - Starting task (booting Ironbark)

2017-06-12 17:46:00 [main] |INFO com ephox.ironbark.|ronbarkBoot - using customdictionary: [global] = 1 words
2017-06-12 17:46:00 [main] INFO com ephox.ironbark.|ronbarkBoot - using customdictionary: "en" = 3 words
2017-06-12 17:46:00 [rmein] | NFO com ephox.ironbark.|ronbarkBoot - using customdictionary: "fr" = 2 words
2017-06-12 17:46:01 [main] INFO com ephox.ironbark.|ronbarkBoot - Finished task (booting Ironbark)

The above log shows that 3 custom dictionaries were found, one "global”, language-independent one and one each for English and French. They were

found to contain 1, 3 and 2 words, respectively. Please check that this report matches your expectations.

Ongoing Dictionary Maintenance

168

https://www.tinymce.com/docs/enterprise/check-spelling/index/
https://www.tinymce.com/docs/enterprise/check-spelling/index/

Future additions/changes to dictionaries after the initial deployment will require a restart of the spell check service each time.

169

Accessibility

Tiny is committed to making the web accessible for content creators and readers of all abilities.

Creating Accessible Content

Textbox.io includes a built in web content accessibility checker that content authors can use to ensure that they're creating the most accessible content
possible.

See the article on Creating Accessible Content for more information.

Accessibility Compliance

Textbox.io complies with the W3C's Web Content Accessibility Guidelines 2.0, Authoring Tool Accessibility Guidelines 2.0, Accessibility for Rich Internet
Applications, and the US Government Section 508 recommendations.

See the article on Textbox.io Accessibility Compliance for more information.

170

http://Textbox.io
http://Textbox.io

Textbox.io Accessibility Compliance

This document provides an overview of the accessibility of Textbox.io as a web component (i.e. the accessibility of the editor's interface). See the
document on Creating Accessible Content for more information on the accessibility tooling provided in Textbox.io to assist authors.

Textbox.io is fully accessible and usable for all users regardless of ability. The editor has been developed as an accessible component from the ground
up, following the relevant best practices set forth by the W3C's ARIA, ATAG 2.0 and WCAG 2.0 guidelines and the US Government Section 508
standards.

Screen Reader Support

Platform Browsers Screen Reader

Windows Firefox* JAWS

* Current stable channel version.

ATAG 2.0 Conformance

On June 13, 2016, the Textbox.io editor (http://textbox.io) conforms to Authoring Tool Accessibility Guidelines 2.0 (http://www.w3.0rg/TR/ATAG20/). Level
AA conformance.

Textbox.io 2.0 ATAG 2.0 Conformance Claim

WCAG 2.0 Conformance

On June 13, 2016, the Textbox.io editor (http://textbox.io) conforms to Web Content Accessibility Guidelines 2.0 at http://www.w3.0rg/TR/2008/REC-
WCAG20-20081211/. Level A & AA conformance.

Section 508 Compliance

Textbox.io adheres to the recommendations set forth in Section 508 of the Rehabilitation Act of 1973.

Textbox.io 2.x VPAT Statement

171

https://www.w3.org/TR/wai-aria/
https://www.w3.org/TR/ATAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/ATAG20/
https://docs.ephox.com/download/attachments/23594609/Textbox.io2.0ATAG2.0ConformanceClaim.pdf?version=1&modificationDate=1465789690348&api=v2
http://textbox.io)
http://www.w3.org/TR/2008/REC-WCAG20-20081211/
http://www.w3.org/TR/2008/REC-WCAG20-20081211/
https://docs.ephox.com/download/attachments/23594609/Textbox.io2.xVPATStatement.pdf?version=1&modificationDate=1465789994862&api=v2

Creating Accessible Content

Textbox.io is compliant with the W3C's Authoring Tool Accessibility Guidelines version 2.0 (ATAG 2.0). The editor assists users in creating accessible
content in several ways:

®* Where possible the editor creates accessible content by default - for example, table header and data cells are automatically mapped when the
user specifies heading rows and/or columns.

® Authors can detect and easily rectify accessibility issues using the editor's accessibility checker

® The editor provides access to all the properties (e.g. alternative text for images, captions for tables) that an author requires to create accessible

content.

Accessibility Checking and Repair

Textbox.io's accessibility checker provide authors with the ability to both check their content for accessibility issues and, in most cases, take simple, direct
action to repair the issue. The issue will be explained in simple, user friendly terms that authors with little or no understanding of accessibility guidelines

can take action on.

For example, if an image without alternative text is detected the accessibility check will prompt the user to provide alternative text. The user is able to take
this action within the accessibility checker directly and is not required to open the image properties dialog or take action outside of the accessibility checker.

A complete list of checks performed by the editor and the corresponding guidelines can be found below.

Accessibility Checks and Guidelines

Document

Element

Images
Images
Tables
Tables
Tables
Tables

Tables

Hyperlinks

Headings

Headings
Lists

Text

Check Description

Check if an image has alternative text

Ensure that the alternative text is not the same as the image's filename
Check if a table has a caption specified

Check if a table has summary specified

Check if the table has headers mapped to data cells

Ensure that table markup is used to correctly structure a table

Ensure that a summary is provided for complex tables (i.e. tables that contained spanned rows or
columns).

Check that the URLs for adjacent links are not the same

Check for use of paragraphs as headings i.e. applying styling to paragraph text to emulate a heading
instead of using heading markup

Ensure that heading markup is used sequentially i.e. H2s only appear after H1s and H3s only after H2s
Detect the use of paragraphs as lists. |.e. using consecutive paragraphs as ordered or unordered lists

Check that the contrast ratio of text (i.e. ratio of foreground color to background color) meets accessibility
guidelines

172

WCAG 2.0
Guideline

111

111

131

131

131

131

131

244

131

Section 508
Guideline

1194.22(a)
1194.22(a)

1194.22(g,h)

1194.22(g,h)

1194.22(d)

http://www.w3.org/TR/ATAG20/

Help & Support

Overview

Support for Textbox.io, is provided online via the Tiny support site. You can access the support site at: https://support.ephox.com.

Prior to opening a support ticket, we require all users to register with a valid business email address. You can register on the support site at: https://support
.ephox.com/registration. Upon registration you will receive an email requesting that you validate your registration. If you don't receive such a request

within 5 minutes please check your spam folder to see if the email ended up there in error. If you never receive the validation email please contact the

Tiny Client Services team via email.

Creating a support ticket

Once you are registered on the site you will be able to interact with the Tiny support team via our support site. To create a new ticket simply go to the
following URL: http://ephox.com/support/ticket.

Note that Tiny support requires that you provide the following information along with your ticket:

Textbox.io Editor Client Issues

® Operating System and Browser version
® JavaScript Console Log
® View source of the editor page (or some other means of obtaining the JS used to instantiate the editor, as we used to do in the early ELJ days)

Textbox.io Server Components Issues

® Server type and version (eg. Jetty, Tomcat)
® Server log - This will be available either on the system.out log for the server or in a separate file if you've configured the optional logging
parameters for Textbox.io on you server(s).

Please see Troubleshooting for troubleshooting advice with the server side components.

173

https://support.ephox.com
https://support.ephox.com
https://support.ephox.com/registration
https://support.ephox.com/registration
https://support.ephox.com/registration
mailto:clientservices@tiny.cloud
mailto:clientservices@tiny.cloud
http://ephox.com/support/ticket
https://docs.ephox.com/display/serversidecomponents/Logging
https://docs.ephox.com/display/serversidecomponents/Logging
https://docs.ephox.com/display/serversidecomponents/Troubleshooting

Web Services Troubleshooting

174

Browser Specific Issues

Internet Explorer Specific Troubleshooting Tips

If the editor is reporting that the service cannot be found and tracing the network traffic reveals that no request is made at all, check that the server
is not listed in the "Trusted Sites" section of Internet Explorer's security options. If it is, remove it and try again.

Chrome Specific Tips

If the server is not running on a standard http or https port (80 or 443) then Chrome will include the port in the origin header that is sent to the server. Other
browsers do not do this. This is why when specifying the "allowed-origins" config, you should use both the hostname by itself and the hostname and port in

the configuration. See Entering Origins for more details

175

" P 1]] . .
Error Messages About the "Origins" or "Spelling Service
Missing"
If you see these errors occurring, this is generally caused by the following reasons. This guide will walk you through the debugging process to identify the
specific problem and how to remedy the issue.
1. The application.conf file is incorrect. Please go back and follow the steps listed in the installation guide. This is the most common problem - often
the origins are specified without the port numbers and this can cause things to fail, eg: use 'http://localhost:8080" instead of 'http://localhost'. After
making changes to the application.conf file, please restart Tomcat .
2. The application.conf file is correct, but something is wrong with one of the services. See the section below to debug the services
3. The application.conf file is correct, and the services are working, but the URL's that editor uses are not quite right. Refer to this config page for
help

4. All of the above are correct, but the browser sends back a different origin. See step 6. of '‘Using Browser Tooling to Investigate Services Issues'
below and add the origin value to the list of origins. Restart Tomcat and then refresh the editor page in a browser and things should work.

Checking the Server Configuration

To test the services, we will start with the following:

We will use Tomcat 7 installed at /opt/tomcat/ and running on port 8080, and this is our ‘application.conf' file. We have made a folder called 'images' in the
webapps directory of the tomcat install i.e. /opt/tomcat/webapps/images/. Some of the commands below that require a 'terminal' window to be used.

If you are on a Linux or Mac environment use a shell of your choice and make sure the 'curl' package is installed.
If you are on a windows environment follow the page Installing curl in Windows and then open a ‘cmd' prompt and run the commands from there.

Please modify your configuration according to how you have it set up based on your environment.

example application.conf

ephox{
al | owed-origins {
origins = ["http://local host", "http://Ilocal host:8080", "http://nyserver"]
url = "http://1ocal host: 8080/ ephox-al | owed- ori gi ns/ cors"
}
i mage- proxy {
storageURL = "http://1ocal host: 8080/ ephox-I ocal - st orage/ api / 1/ st or el nrage"
}
| ocal - storage {
i mgesDirectory = "/opt/tontat 7/ webapps/i mages/"
returnUrl = "http://Ilocal host: 8080/i nages/"
}
}

Lets start with the 'ephox-allowed-origins'

Once you've deployed the service and started Tomcat/Jetty open a browser window and enter the following:

origins request

http://1 ocal host: 8080/ ephox- al | owed-ori gi ns/cors

This should return the entire list of origins that you specified in the application.conf file. So you should see the following returned, if everything is working
correctly. If you see only one or do not see this altogether, then Tomcat hasn't been configured correctly to use the application.conf file. Refer to step 3 of
the Installing Services Section to fix this and make sure you can see the response below before proceeding

176

http://docs.ephox.com/display/tbio/Using+Browser+Tooling+to+Investigate+Services+Issues#origin
https://docs.ephox.com/pages/createpage.action?spaceKey=tbio&title=Installing+Server+Components&linkCreation=true&fromPageId=23594598

origins response

{"value":["http://local host", "http://local host:8080", "http://nyserver"]}

Debugging 'ephox-spelling’

Once you've deployed the service and started Tomcat/Jetty open a browser window and enter the following:

spelling request

http://1 ocal host: 8080/ ephox-spel | i ng/ versi on

This should return the version number "1.1.0"

Now open a terminal window and enter the following to test that the dictionaries are loaded correctly and the service is responding as intended. Note: the
"Origin" value specifies the origin that the request is originating from - in a browser with the editor loaded this happens automatically

spelling suggestion req unix

curl -v --request POST -H "Content-Type: application/json" -H"Origin: http://local host:8080" http://Ilocal host:
8080/ ephox- spel | i ng/ 1/ suggestion -d '{ "words":["hello","world"], "language": "en_US" }'

If you are using Windows and curl, please make sure you add escape characters ("\") to the quotes and use double quotes (") around the data parameter,
in@d of single quotes (") as shown below

WINDOWS ONLY : spelling suggestion

curl -v --request POST -H "Content-Type: application/json" -H"Oigin: http://1ocal host:8080" http://| ocal host:
8080/ ephox-spel | i ng/ 1/ suggestion -d "{ \"words\":[\"hello\",\"world\"], \"language\": \"en_US\" }"

The response below is what you should see. The example below is good and returns a status code 200. If you see a error code 403, that means the value
of the "Origin " supplied is incorrect. Please edit the list of origins in the "application.conf file and restart Tomcat7.

177

origins response

* Hostname was NOT found in DNS cache

* Trying w. x.y.z...

Connected to | ocal host (w x.y.z) port 8080 (#0)
PCST / ephox- spel | i ng/ 1/ suggestion HTTP/ 1.1
User-Agent: curl/7.35.0

Host: | ocal host: 8080

Accept: */*

Cont ent - Type: application/json

Oigin: http://1ocal host: 8080

Cont ent - Length: 64

*

*V VV V VYV VYV

upl oad conpletely sent off: 64 out of 64 bytes
HTTP 1.0, assune cl ose after body

*

< HTTP/ 1.0 200 XK

< Access-Control -Al |l ow Credentials: true

< Access- Control - Al | ow Met hods: GCET, PUT, POST, DELETE, OPTI ONS

< Access-Control -Allow Oigin: http://I|ocal host: 8080

< Access- Control - Max- Age: 3600

< Content-Type: application/json;charset=UTF-8

< Date: Tue, 25 Nov 2014 23:34:09 GVI

< Content-Length: 302

< Connection: close

<

* Cd osing connection 0

{"suggest":{"hello":["hello","hellos","hell","helot","hellion","helloed", "helloes","jello","hal 0", "shell","
he'I'l","he” 11", "hel ots","hallow', "holl ow', "hall 00"], "world":["world","worlds", "word", "wol d", “worldly","
whor | ed", "sword", "whor| ", "wordy", "words", "ol d", "woul d", "wor ked", "ward", "swords", "whorls"]}}

Once you see that the service is responding with the correct response, the next steps are to check the data that the browser is sending to the service.

Related articles

® Using Browser tooling to investigate services
® Error messages about the "Origins" or "Spelling Service Missing"
® Qut of Memory Errors

178

https://docs.ephox.com/display/serversidecomponents/Using+Browser+tooling+to+investigate+services
https://docs.ephox.com/pages/viewpage.action?pageId=19760166
https://docs.ephox.com/display/serversidecomponents/Out+of+Memory+Errors

Using Browser Tooling to Investigate Services Issues

1.

Open your browser's Console/Network tools:

Chrome: View menu -> Developer -> JavaScript Console. Click the Network tab (located between Elements and Sources).

Firefox: Tools menu -> Web Developer -> Network.

Safari: Develop -> Show Error Console. Click the Timelines link between Resources and Debugger.

Internet Explorer: Click the cog icon on the top-right side of the browser. Select F12 Developer Tools. Click the Network link (next to the ‘Profiler’
link).

. Refresh the webpage featuring an Tiny rich-text editor configured with the spelling service. Enter a misspelled word into the editor.
. Locate the network results that match the following URLSs:

- http://lYOUR_SERVER:YOUR_PORT/ephox-spelling/1/autocorrect
- http://YOUR_SERVER:YOUR_PORT/ephox-spelling/1/correction

. If the network response for these services is 404, try the following:

- Take the service URL displayed as erroneous (example: http://YOUR_SERVER:YOUR_PORT/ephox-spelling/1/autocorrect).

- Remove everything from the ‘1’ onwards (including the ‘1) and replace it with /version. (example: Change http:/YOUR_SERVER:YOUR_PORT
/ephox-spelling/1/correction to http://YOUR_SERVER:YOUT_PORT/ephox-spelling/version). The response code should be 200 and the body
should display the version number.

. If the response for the version URL is still 404, it means the service has not been started or installed correctly.
. To check the "Origin" value that the browser uses, open the network tools (chrome in this screenshot) and refresh the page. Then enter a couple

of words in the editor and select one of the requests on the bottom left (‘correction’ in the screen shot) and select the 'Headers' section. Look for
the 'Origin' header value.

+« » O # |[}textbox.io
it Apps () vsphere { MixMaster (] webradar (] css (] scala (] other [paas (] cassandra [Zf IBM Social Busines: [spray | Documentz' [* Code Examples for

textboxm Mobile WYSIWYG Features Demo Pricing
Hi, I'm Textbox.io!

Textbox io's powerful editing tools and simple user interface let your users create great looking HTML
anywhere: on the desktop and on mobile.

This demo shows the Textbox.io Editor in its standard configuration, with its core HTML editing capabilities
enabled. These include: text-formatting, tables, hyperiinks, and lists. Other advanced features include:

« Built-in Image Handling & Storage
« File Drag & Drop

+ Spell Check & Autocorrect

« Clean Copy-Paste From Microsoft Word
+ Cross-Browser Support

Q [] Elements | Network | Sources Timeline Profiles Resources Audits Console
® © ¥ := (Preservelog [Disablecache

Name « i
Path Headers| Preview Response Timing

v Request Headers view source
Accept: application/json, text/javascript, */%; q=8.01
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=8.8
Connection: keep-alive
Content-Length: 53
Content-Type: application/json

“ correction

Origin: http: //textbox. 1o

textbox-api-key: demo
User-Agent: Mozilla/5.68 (XI1; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/38.6.2125.111 Chrome/38.6.2125.111 Safari/s37.36

¥ Request Payload view source

¥ {word ss-Browser, Support]. language:en}

3requests | 2.3KB transferred

The value of the origin header sent by the must match the origin specified in the application.conf server configuration. If it does not match, you
m@make the server configuration match the browser

Windows Server Specific Issues:

Sometimes the 'Origin' header is never sent to the services, which results in the editor and services not working as intended. Follow step 6 from above and
determine what the 'Origin' is - if you do not see an 'Origin’ header at all, please do the following:

1. Try accessing the editor web page using your machine's fully qualified domain name (FQDN) rather than 'localhost'; and keep the network tools

2.

open so you can see if the 'Origin' header is sent back to the services.
So open a browser window and try (replace the path to match your setup):

fgdn request

http://nyhost: nmyport/textboxi o/index. htn

If you now see an 'Origin' header being sent across, please alter your application.conf and replace all instances of 'localhost' with the domain
name of your machine

179

http://your_serveryour_port/
http://your_serveryour_port/
http://your_serveryour_port/
http://your_serveryour_port/
http://your_serveryour_port/
http://your_server/ephox-spelling/version

3. Restart the Tomcat / Jetty service
4. Reload the browser page and all should work well
5. If you are still experiencing problems, please contact Tiny Support.

180

mailto:support@tiny.cloud

General Troubleshooting
General Troubleshooting Advice

Step 1

Verify that the spelling configuration is correct in your editor client JavaScript configuration.

Step 2

Ensure that your firewall has the appropriate ports and rules configured correctly. Be sure that the server the service is running on is accessible from the
browser via the port specified in the server configuration

Step 3

Check the logs of the appropriate Java server for information. When making changes to the configuration you will need to restart the application server
each time a change is made for that change to take effect. Refresh your browser window and then try the service again.

181

Out of Memory Errors

The Java Application Server Throws "Out of Memory" Errors
Even though you may have a large amount of RAM available, the Java Virtual Machine doesn't get to see all of that - by default it is limited to only 256Mb.

For example, if you are using Tomcat, you can view how much memory is being consumed by apps. To do this you need to have the management console
enabled.

On a vanilla install this is done by editing the file / t ontat /i nstal | / di rect ory/ conf/tontat - users. xn adding these lines in:

<rol e rol ename="nanager-gui " />
<user username="tontat" password="password" rol es="nanager-gui"/>

Then, restart the server and go to a browser and open the default tomcat page http://localhost:8080. On the top right hand side are three buttons, the first
of which should be "Server Status". Click that link, login with the details you set above and you should be able to see the memory consumption (see the
figure below for an example).

182

http://localhost:8080/

/manager - Google Chrome
[#] /manager *®
- > O & ID localhost:8080/manager/status ﬂg’] @ =

i Apps

8. "°Apache . %)

Software Foundation
http://www.apache.org/

Server Status

List Applications HTML Manager Help Manager Help Complete Server Status

Tomcat Version JVM Version JVM Vendor ‘0S Name ‘0S Version os F IP Address
Apache Tomcat/7.0.54 | 17055014 | Oracle Coporation [Lnux | 313.024geneic | amdsd | test | 1emoa1

VM

Free memory: 1696.71 MB Total memory: 1963.50 MB Max memory: 1963.50 MB

Memory Pool Type Initial Total Maximum Used

PS Eden Space Heap memory 513.00 MB 513.00 MB 513.00 MB 266.78 MB (52%)
PS Old Gen Heap memory 1365.50 MB 1365.50 MB 1365.50 MB 0.00 MB (0%)
PS Survivor Space Heap memory 85.00 MB 85.00 MB 85.00 MB 0.00 MB (0%)
Code Cache Non-heap memory 243 MB 243 MB 48.00 MB 1.39 MB (2%)
PS Perm Gen Non-heap memory 64.00 MB 64.00 MB 512.00 MB 16.65 MB (3%)

"ajp-bio-8009"

Max threads: 200 Current thread count: 0 Current thread busy: 0
Max processing time: 0 ms Processing ime: 0.0 s Request count: 0 Error count: 0 Bytes received: 0.00 MB Bytes sent: 0.00 MB

B Sent Client (Forwarded)

Stage Time B Recv Client (Actual) Request

P: Parse and prepare request S: Service F: Finishing R: Ready K: Keepalive

"http-bio-8080"

Max threads: 200 Current thread count: 10 Current thread busy: 4
Max processing time: 53 ms Processing time: 0.157 s Request count: 9 Error count: 3 Bytes received: 0.00 MB Bytes sent: 0.05 MB
Stage Time B Sent B Recv Client (Forwarded) Client (Actual) VHost Request

S 4ms 0 KB 0KB 127.0.0.1 127.0.01 localhost GET /manager/status HTTP/1.1
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

P: Parse and prepare request S: Service F: Finishing R: Ready K: Keepalive

Copyright © 1999-2014, Apache Software Foundation

To increase the amount of memory:

Tomcat :

Edit the setenv.sh (Unix) or setenv.bat (Windows) to read as follows:

windows config

1
On Windows, please prefix each line with 'set' and remove the quotes . So the configuration would look like:

set CATALI NA_OPTS= -Dconfig.file=/config/filel/location/application.conf
set JAVA _OPTS= - Xn82048m - Xnx2048m - XX: Per n5i ze=64m - XX: MaxPer nSi ze=512m - Df i | e. encodi ng=utf-8 -Dj ava. awt .
headl ess-true -XX: +UseParal | el GC - XX: MaxGCPauseM | | i s=100

183

CATALI NA_OPTS=" -Dconfig.file=/config/filel/location/application.conf

JAVA_OPTS=" -Xnms2048m - Xnx2048m - XX: Per nSi ze=64m - XX: MaxPer nSi ze=512m - Df i | e. encodi ng=ut f-8 - Dj ava. awt . headl| ess-
true - XX +UseParal | el GC - XX: MaxGCPauseM | | i s=100"

Jetty :

Edit the start.ini file to read as follows:

Jetty start.jar arguments

Each line of this file is prepended to the command |ine
arguments # of a call to:

java -jar start.jar [arg...]

H*

"

- Xms2048m - Xmk2048m - XX: Per nSi ze=64m - XX: MaxPer nSi ze=512m - Dconfi g.fil e=/config/fil e/l ocation/application.conf

Restart the service and confirm the settings have been applied like so:

Terminal

File Edit View Search Terminal Help

184

Troubleshooting Tools - curl

Installing curl on Mac

curl is installed by default on all MacOS X installations. Open the "terminal” application to use it

Installing curl on Linux

Use your distribution package manager to install curl. See your distribution documentation for details.

Installing curl (or equivalent package) on Windows
Download and install the curl package based on your environment:
x64: http://curl.haxx.se/dlwiz/?type=bin&os=Win64&flav=MinGW64

x86: http://curl.haxx.se/dlwiz/?type=bin&os=Win32&flav=-&ver=2000%2FXP and select either of the curl version: 7.39.0 - SSL enabled SSH enabled pa
ckages

Once downloaded:

1. Unzip the package like so:

. = Computer - Local Disk {C:) = Users = Test - Download - m I Search Download

File Edit View Tools Help

Organize ¥ | |Open Sharewith v New folder

Mame | Date modified | Type

I Favorites

= Libraries
Qpen archive
[Edit with Motepad++ Extract files...

1M Computer
Extract Here

‘e_? Local Disk (C:) Share with
Restore previous wversions

Test archive

?! Metwork, Send ko Add to archive. ..

Compress and email...

Add to "curl-7.39.0-rtmp-ssh2-ssl-sspi-zlib-winidn-static-bin-wa4. 7. 72"

Compress to "curl-7.39,0-ttmp-s5h2-ssl-sspi-zlib-winidn-static-bin-w64. 72.72" and email
Create shorkout Add ta "curl-7.39.0-ttmp-ssh2-ssl-sspi-z ... lb-winidn-static-hin-wad. 72.zip"

Delete Compress to "curl-7 .39, 0-rtmp-ssh2-ssl-sspi-z ... [b-winidn-static-bin-we4. 7z.zip" and email

cut
Copy

Rename

Froperties

curl-7.39.0-rtmp-ssh2-ssksspi-zlib-winidn-sta... Date modified: 26/11/2014 9:49 AM Date created: 26/11J2014 11:34 AM
7Z File Size: 1,18 MB

2. Copy the path of the folder to where the ‘curl.exe’ is in:

185

http://curl.haxx.se/dlwiz/?type=bin&os=Win64&flav=MinGW64
http://curl.haxx.se/dlwiz/?type=bin&os=Win32&flav=-&ver=2000%2FXP

1 EBN | camreh il 7 20 Moebronee,
Unicla

File Edit View Tools Help

Organize * Incude inlibrary * Share with + Mew Folder

. Favorites HEL

Cut

Drate moc Raste
Delete

|| buid
|| CHANGES
L COPYING

4 Librariss

18| Computer Iﬂ curl
&2, Local Disk (C:) & curl

| curl.pdf

?! Metwork

5{11{201
5(11/201
4{11f201

Select Al

Right to left Reading order
Show Unicode control charackers
5/11f201 Insert Unicade contral character

SALZ0L pen mE
5/11/201 | Recanversion

1| libcurd il

1% libeay32.dl

Ef_;i mk-ca-bundle
|| README

|| RELEASE-NOTES
|| ssleay3z.dl

5(112014 9:05 PM
22/10{2014 4:50 AM
4/11{2014 11:51 PM
12[06/2014 3:52 AM
5{11/2014 6:23 PM
22{10{2014 4:50 AM

Application extension
Application extension
WESCHipt Script File
Fil=

File

Application extension

hz-ssl-sspi-...

1 KB
159 KB
2KB
2,123 KB
137 KB
103 KB
571 KB
1,416 KB
12 KB
2KB

6 KB
30 KB

12 items

3. Open a cmd prompt. Start -> Programs -> Accessories -> cmd (or command prompt). Then change to that directory to the fodler where the ‘curl.exe’
is found.Enter 'cd’ (without quotes) and then paste in the path from step 2.

186

File Edit Yiew Tools

Organize

0 Favarites
-l Libraries

1M Computer
‘:_f Local Disk (C:)

G“; Metwark

12 items

Include in library

Share with +

Mame «

Mew folder

Dake modified

| Type

| Size

| build

|| CHANGES

L | COPYING
[curl

G curl

| curl.pdf

| libcurl.dil

5 libeay3z, dil

E;i mk-ca-bundle
|| README

|| RELEASE-NOTES

|| ssleay3z . di

mmand Prompt =] B3

Civded o

5(11/2014 2:05 FM
5(11/2014 6:26 FM
4{11/2014 11:51 PM
5(11/2014 2:05 FM
5(11/2014 6:25 PM
5(11/2014 6:25 FM
5(11/2014 2:05 FM
22{10/2014 4:50 AM
4{11/2014 11:51 PM
12/06/2014 3:52 AM
5(11/2014 6:23 FM
22{10/2014 4:50 AM

Text Document

File:

File:

Application

Chraome HTML Docu,..
PDF File

Application extension
Application extension
WEScript Script File
File:

File:

Application extension

Mark.
Copy Enter:

Seleck Al
Scroll
Find...

4. Once in the folder enter ‘curl --version' (without quotes) and ensure you get a valid version

187

1KE
159 KB
2KB
2,123 KB
137 KB
103 KB
571KE
1,416 KB
12KEB
2KB

6 KB
310KE

[z Command Prompt M=] E3

C:slUzersstestsDownloadscurl-7.37 _B—rtmp—szh2—ssl-sspi—zlib—winidn—static—hin—wb
dwocurl-Y.3?2.08—rtmp—ssh2—szl-sspi—=2lib—winidn—static—-hin—w64>curl ——wversion l
curl 7.37.8 xB6_64-pc—wind2r libcurls?.37_8 OpenSSLo.A.8o zlibs1.2.8 WinIDH 1i
hssh2-1.4.3 librtnp-s2.3
Protocols: dict file ftp ftps guphel- http https imap imaps ldap pop3 popds rtmp
rtsp scp sftp smtp smtps telnet tft
Features: AszynchDNS IDH Largefile SSPI SPHNEGO NHTLM S8L lib=

188

	Textbox.io Documentation
	Developer Guide
	System Requirements
	Getting Started
	API Basics
	Creating and Removing Editors
	Getting Editor Instances
	Setting and Getting Content
	HTML Code View

	Customizing the Editor
	Configuration Object
	Changing the Toolbar
	Adding custom commands

	Customizing the User Interface Colors
	Using Your Own Document Styles
	Filtering Content
	Macros: Writing Content-Aware Code
	Creating Dynamic Content

	Editor types - Classic vs Inline
	Working with Images
	Handling Local Images
	Handling Asynchronous Image Uploads
	Node.js Upload Handler
	PHP Upload Handler

	Checking Spelling

	API reference
	configuration
	autosubmit
	basePath
	codeview
	css
	documentStyles
	styles
	stylesheets

	images
	allowLocal
	editing
	upload

	links
	embed
	validation

	macros
	paste
	spelling
	ui
	aria-label
	autoresize
	colors
	fonts
	languages
	locale
	shortcuts
	toolbar
	Command Item IDs

	editor
	editor.content
	editor.content.set()
	editor.content.get()
	editor.content.insertHtmlAtCursor()
	editor.content.documentElement()
	editor.content.uploadImages()
	editor.content.getSelectedText()
	editor.content.isDirty()
	editor.content.setDirty()
	editor.content.selection

	editor.element
	editor.events
	editor.events.loaded
	editor.events.loaded.addListener()
	editor.events.loaded.removeListener()

	editor.events.focus
	editor.events.focus.addListener()
	editor.events.focus.removeListener()

	editor.events.dirty
	editor.events.dirty.addListener()
	editor.events.dirty.removeListener()

	editor.events.change
	editor.events.change.addListener()
	editor.events.change.removeListener()

	editor.filters
	selector
	editor.filters.selector.addInput()
	editor.filters.selector.addOutput()

	predicate
	editor.filters.predicate.addInput()
	editor.filters.predicate.addOutput()

	editor.focus
	editor.macros
	editor.macros.addSimpleMacro()
	editor.macros.removeMacro()

	editor.message
	editor.mode
	editor.mode.get()
	editor.mode.set(mode)

	editor.restore

	textboxio
	get
	getActiveEditor
	inline
	inlineAll
	isSupported
	replace
	replaceAll
	version

	Server-Side Components
	Installation and Setup
	Logging
	Embed Rich Media
	Configure Enhanced Media Embed Server
	Integrate Enhanced Media Embed Server

	Adding Custom Dictionaries

	Accessibility
	Textbox.io Accessibility Compliance
	Creating Accessible Content

	Help & Support
	Web Services Troubleshooting
	Browser Specific Issues
	Error Messages About the "Origins" or "Spelling Service Missing"
	Using Browser Tooling to Investigate Services Issues

	General Troubleshooting
	Out of Memory Errors
	Troubleshooting Tools - curl

